summaryrefslogtreecommitdiff
path: root/src/transforms.rs
blob: 9eee4062c15b0f620df1c8326fc0aebb1c6af7b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
extern crate dft;

#[derive(Clone, Debug)]
pub struct FrequencyBucket {
    pub min_freq: f64,
    pub max_freq: f64,
    pub intensity: f64
}

impl FrequencyBucket {
    pub fn ave_freq(&self) -> f64 {
        (self.min_freq + self.max_freq) / 2.0
    }
}

pub fn fft(input: &Vec<f64>, sample_rate: f64) -> Vec<FrequencyBucket> {
    let frames = input.len();
    let mean_input = input.iter().sum::<f64>()/input.len() as f64;
    
    let mut intensities = input.iter().map(|x|x-mean_input).collect::<Vec<_>>();
    let plan = dft::Plan::new(dft::Operation::Forward, frames);
    dft::transform(&mut intensities, &plan);

    let frequency_resolution = sample_rate / 2.0 / frames as f64;
    
    intensities.iter().enumerate().map(|(index, &value)| {
        let index = index as f64;
        FrequencyBucket {
            min_freq: index * frequency_resolution,
            max_freq: (index+1.0) * frequency_resolution,
            intensity: value
        }
    }).collect()
}

pub fn find_fundamental_frequency(frequency_domain: &Vec<FrequencyBucket>) -> Option<f64> {
    //TODO look at all significant frequencies, find fundamental
    //TODO return None is none of them are significant
    let positive_buckets = frequency_domain.iter().filter(|x| x.intensity > 0.0).cloned().collect::<Vec<_>>();
    let average_intensity = positive_buckets.iter().map(|x| x.intensity).sum::<f64>() / frequency_domain.len() as f64;
    let significant_buckets = positive_buckets.iter().filter(|x| x.intensity > average_intensity).cloned().collect::<Vec<_>>();
    
    let max_bucket = significant_buckets.iter()
        .fold(None as Option<::transforms::FrequencyBucket>, |max, next|
              if max.is_none() || max.clone().unwrap().intensity < next.intensity { Some(next.clone()) } else { max }
        ).unwrap();

    Some(max_bucket.ave_freq())
}

pub fn correlation(input: &Vec<f64>) -> Vec<f64> {
    let mut correlation = Vec::with_capacity(input.len());
    for offset in 0..input.len() {
        let mut c = 0.0;
        for i in 0..input.len()-offset {
            let j = i+offset;
            c += input[i] * input[j];
        }
        correlation.push(c);
    }
    correlation
}

pub fn find_fundamental_frequency_correlation(input: &Vec<f64>, sample_rate: f64) -> Option<f64> {
    let mut correlation = correlation(&input);

    //at offset = 0, we have union, so we want to remove that peak
    for offset in 1..correlation.len() {
        if correlation[offset-1] < correlation[offset] {
            break;
        }
        correlation[offset-1] = 0.0;
    }

    let peak = correlation.iter()
        .enumerate()
        .fold((0, 0.0 as f64), |(xi, xmag), (yi, &ymag)| if ymag > xmag { (yi, ymag) } else { (xi, xmag) });

    let (peak_index, _) = peak;
    
    let peak_period = peak_index as f64 / sample_rate;
    Some(peak_period.recip())
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::f64::consts::PI;
    
    const SAMPLE_RATE: f64 = 44100.0;
    const FRAMES: usize = 512;

    fn frequency_resolution() -> f64 {
        SAMPLE_RATE / 2.0 / FRAMES as f64
    }

    fn sin_arg(f: f64, t: f64, phase: f64) -> f64 {
        2.0 as f64 * PI * f * t + phase
    }

    fn sample_sinusoud(amplitude: f64, frequency: f64, phase: f64) -> Vec<f64> {
        (0..FRAMES)
            .map(|x| {
                let t = x as f64 / SAMPLE_RATE;
                sin_arg(frequency, t, phase).sin() * amplitude
            }).collect()
    }
    
    #[test]
    fn fft_on_sine_wave() {
        let frequency = 440.0 as f64; //concert A
        
        let samples = sample_sinusoud(1.0, frequency, 0.0);
        let frequency_domain = fft(&samples, SAMPLE_RATE);
        let fundamental = find_fundamental_frequency(&frequency_domain).unwrap();

        assert!((fundamental-frequency).abs() < frequency_resolution(), "expected={}, actual={}", frequency, fundamental);
    }

    #[test]
    fn fft_on_two_sine_waves() {
        //Unfortunately, real signals won't be this neat
        let samples1a = sample_sinusoud(2.0, 440.0, 0.0);
        let samples2a = sample_sinusoud(1.0, 880.0, 0.0);
        let expected_fundamental = 440.0;
        
        let samples = samples1a.iter().zip(samples2a.iter())
            .map(|(a, b)| a+b)
            .collect();
        let frequency_domain = fft(&samples, SAMPLE_RATE);
        
        let fundamental = find_fundamental_frequency(&frequency_domain).unwrap();

        assert!((fundamental-expected_fundamental).abs() < frequency_resolution(), "expected_fundamental={}, actual={}", expected_fundamental, fundamental);
    }

    #[test]
    fn correlation_on_sine_wave() {
        let frequency = 440.0 as f64; //concert A
        
        let samples = sample_sinusoud(1.0, frequency, 0.0);
        let fundamental = find_fundamental_frequency_correlation(&samples, SAMPLE_RATE).unwrap();
        assert!((fundamental-frequency).abs() < frequency_resolution(), "expected={}, actual={}", frequency, fundamental);
    }

    #[test]
    fn correlation_on_two_sine_waves() {
        //Unfortunately, real signals won't be this neat
        let samples1a = sample_sinusoud(2.0, 440.0, 0.0);
        let samples2a = sample_sinusoud(1.0, 880.0, 0.0);
        let expected_fundamental = 440.0;
        
        let samples = samples1a.iter().zip(samples2a.iter())
            .map(|(a, b)| a+b)
            .collect();

        let fundamental = find_fundamental_frequency_correlation(&samples, SAMPLE_RATE).unwrap();

        assert!((fundamental-expected_fundamental).abs() < frequency_resolution(), "expected_fundamental={}, actual={}", expected_fundamental, fundamental);
    }
}

pub fn hz_to_pitch(hz: f64) -> String {
    let pitch_names = [
        "C",
        "C#",
        "D",
        "Eb",
        "E",
        "F",
        "F#",
        "G",
        "G#",
        "A",
        "Bb",
        "B"
    ];

    let midi_number = 69.0 + 12.0 * (hz / 440.0).log2();
    //midi_number of 0 is C-1.

    let rounded_pitch = midi_number.round() as i32;
    let name = pitch_names[rounded_pitch as usize % pitch_names.len()].to_string();
    let octave = rounded_pitch / pitch_names.len() as i32 - 1; //0 is C-1
    if octave < 0 {
        return "< C1".to_string();
    }

    let mut cents = ((midi_number * 100.0).round() % 100.0) as i32;
    if cents >= 50 {
        cents -= 100;
    }
    
    format!("{}{} {:+}", name, octave, cents)
}

#[test]
fn a4_is_correct() {
    assert_eq!(hz_to_pitch(440.0), "A4 +0");
}

#[test]
fn a2_is_correct() {
    assert_eq!(hz_to_pitch(110.0), "A2 +0");
}

#[test]
fn c4_is_correct() {
    assert_eq!(hz_to_pitch(261.63), "C4 +0");
}

#[test]
fn f5_is_correct() {
    assert_eq!(hz_to_pitch(698.46), "F5 +0");
}