1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
use nom::{
branch::alt,
bytes::complete::tag,
character::complete::{alpha1, line_ending, u32},
combinator::map,
multi::separated_list1,
sequence::tuple,
IResult,
};
use std::{
collections::{BTreeMap, BTreeSet},
fs,
};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let input = fs::read_to_string("inputs/day_16.txt")?;
let nodes = Nodes::parser(&input).unwrap().1;
let mut condensed = nodes.condense();
let mut initial_open_valves = BTreeSet::new();
initial_open_valves.insert(0);
let initial_state = State {
actors: vec![Actor {
position: 0,
time_remaining: 30,
}],
open_valves: initial_open_valves.clone(),
};
dbg!(condensed.find_optimal_pressure_relieved(&initial_state));
let initial_state_with_elephant = State {
actors: vec![
Actor {
position: 0,
time_remaining: 26
};
2
],
open_valves: initial_open_valves,
};
dbg!(condensed.find_optimal_pressure_relieved(&initial_state_with_elephant));
Ok(())
}
#[derive(Debug, Clone)]
struct Nodes {
nodes: BTreeMap<String, Node>,
}
#[derive(Debug, Clone)]
struct Node {
id: String,
flow_rate: u32,
exits: BTreeMap<String, u32>,
}
#[derive(Debug)]
struct CondensedNodes {
nodes: Vec<CondensedNode>,
cache: BTreeMap<State, u32>,
}
#[derive(Debug, Clone)]
struct CondensedNode {
flow_rate: u32,
exits: Vec<u32>,
}
impl Nodes {
fn parser(input: &str) -> IResult<&str, Self> {
map(separated_list1(line_ending, Node::parser), |nodes| Nodes {
nodes: nodes
.into_iter()
.map(|node| (node.id.clone(), node))
.collect(),
})(input)
}
fn condense(&self) -> CondensedNodes {
let node_ids: Vec<String> = self
.nodes
.values()
.filter(|n| n.id == "AA" || n.flow_rate > 0)
.map(|n| n.id.clone())
.collect();
let mut condensed = CondensedNodes {
nodes: self
.nodes
.values()
.filter(|n| n.id == "AA" || n.flow_rate > 0)
.map(|n| CondensedNode {
flow_rate: n.flow_rate,
exits: Vec::new(),
})
.collect(),
cache: BTreeMap::new(),
};
for (id, mut node) in condensed.nodes.iter_mut().enumerate() {
node.exits = node_ids
.iter()
.map(|original_destination_id| {
// +1 because in condensed it includes opening the valve
self.find_shortest_path(&node_ids[id], &original_destination_id) + 1
})
.collect()
}
condensed
}
fn find_shortest_path(&self, from: &str, to: &str) -> u32 {
let mut frontier: BTreeSet<&str> = BTreeSet::new();
let mut explored: BTreeSet<&str> = BTreeSet::new();
let mut distance = 0;
explored.insert(from);
frontier.insert(from);
while !frontier.is_empty() {
let mut next_frontier: BTreeSet<&str> = BTreeSet::new();
distance += 1;
for frontier_point in frontier {
for adjacent_point in self.nodes.get(frontier_point).unwrap().exits.keys() {
if adjacent_point == to {
return distance;
}
if !explored.contains(&adjacent_point.as_ref()) {
explored.insert(adjacent_point);
next_frontier.insert(adjacent_point);
}
}
}
frontier = next_frontier;
}
panic!("Didn't reach end");
}
}
impl Node {
fn parser(input: &str) -> IResult<&str, Self> {
map(
tuple((
tag("Valve "),
alpha1,
tag(" has flow rate="),
u32,
alt((
tag("; tunnels lead to valves "),
tag("; tunnel leads to valve "),
)),
separated_list1(tag(", "), alpha1),
)),
|(_, id, _, flow_rate, _, exits): (_, &str, _, u32, _, Vec<&str>)| Node {
id: id.to_owned(),
flow_rate,
exits: exits
.into_iter()
.map(|destination| (destination.to_owned(), 1))
.collect(),
},
)(input)
}
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
struct State {
actors: Vec<Actor>,
open_valves: BTreeSet<usize>,
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
struct Actor {
position: usize,
time_remaining: u32,
}
impl State {
fn sort_actors(&mut self) {
self.actors.sort()
}
}
impl CondensedNodes {
fn find_optimal_pressure_relieved(&mut self, state: &State) -> u32 {
let cache_value = self.cache.get(state);
if let Some(cache_value) = cache_value {
return *cache_value;
}
let mut computed_value = 0;
for (actor_i, actor) in state.actors.iter().enumerate() {
let exits_to_investigate: Vec<(usize, u32)> = self.nodes[actor.position]
.exits
.iter()
.enumerate()
.filter(|(destination, distance)| {
!state.open_valves.contains(destination) && **distance <= actor.time_remaining
})
.map(|(destination, distance)| (destination.clone(), distance.clone()))
.collect();
for (destination, distance) in exits_to_investigate {
let mut open_valves = state.open_valves.clone();
open_valves.insert(destination.clone());
let new_actor = Actor {
time_remaining: actor.time_remaining - distance,
position: destination.clone(),
};
let relief_from_this_valve =
self.nodes[destination].flow_rate * new_actor.time_remaining as u32;
let mut actors = state.actors.clone();
actors[actor_i] = new_actor;
let mut state_this_way = State {
actors,
open_valves,
};
state_this_way.sort_actors();
let recursive_relief = self.find_optimal_pressure_relieved(&state_this_way);
let relief = relief_from_this_valve + recursive_relief;
computed_value = computed_value.max(relief);
}
}
self.cache.insert(state.clone(), computed_value);
computed_value
}
}
|