1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
#if defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP)
RGB_MATRIX_EFFECT(TYPING_HEATMAP)
# ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
# ifndef RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS
# define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS 25
# endif
# ifndef RGB_MATRIX_TYPING_HEATMAP_SPREAD
# define RGB_MATRIX_TYPING_HEATMAP_SPREAD 40
# endif
# ifndef RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT
# define RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT 16
# endif
void process_rgb_matrix_typing_heatmap(uint8_t row, uint8_t col) {
# ifdef RGB_MATRIX_TYPING_HEATMAP_SLIM
// Limit effect to pressed keys
g_rgb_frame_buffer[row][col] = qadd8(g_rgb_frame_buffer[row][col], 32);
# else
for (uint8_t i_row = 0; i_row < MATRIX_ROWS; i_row++) {
for (uint8_t i_col = 0; i_col < MATRIX_COLS; i_col++) {
if (i_row == row && i_col == col) {
g_rgb_frame_buffer[row][col] = qadd8(g_rgb_frame_buffer[row][col], 32);
} else {
# define LED_DISTANCE(led_a, led_b) sqrt16(((int8_t)(led_a.x - led_b.x) * (int8_t)(led_a.x - led_b.x)) + ((int8_t)(led_a.y - led_b.y) * (int8_t)(led_a.y - led_b.y)))
uint8_t distance = LED_DISTANCE(g_led_config.point[g_led_config.matrix_co[row][col]], g_led_config.point[g_led_config.matrix_co[i_row][i_col]]);
# undef LED_DISTANCE
if (distance <= RGB_MATRIX_TYPING_HEATMAP_SPREAD) {
uint8_t amount = qsub8(RGB_MATRIX_TYPING_HEATMAP_SPREAD, distance);
if (amount > RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT) {
amount = RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT;
}
g_rgb_frame_buffer[i_row][i_col] = qadd8(g_rgb_frame_buffer[i_row][i_col], amount);
}
}
}
}
# endif
}
// A timer to track the last time we decremented all heatmap values.
static uint16_t heatmap_decrease_timer;
// Whether we should decrement the heatmap values during the next update.
static bool decrease_heatmap_values;
bool TYPING_HEATMAP(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
if (params->init) {
rgb_matrix_set_color_all(0, 0, 0);
memset(g_rgb_frame_buffer, 0, sizeof g_rgb_frame_buffer);
}
// The heatmap animation might run in several iterations depending on
// `RGB_MATRIX_LED_PROCESS_LIMIT`, therefore we only want to update the
// timer when the animation starts.
if (params->iter == 0) {
decrease_heatmap_values = timer_elapsed(heatmap_decrease_timer) >= RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS;
// Restart the timer if we are going to decrease the heatmap this frame.
if (decrease_heatmap_values) {
heatmap_decrease_timer = timer_read();
}
}
// Render heatmap & decrease
uint8_t count = 0;
for (uint8_t row = 0; row < MATRIX_ROWS && count < RGB_MATRIX_LED_PROCESS_LIMIT; row++) {
for (uint8_t col = 0; col < MATRIX_COLS && RGB_MATRIX_LED_PROCESS_LIMIT; col++) {
if (g_led_config.matrix_co[row][col] >= led_min && g_led_config.matrix_co[row][col] < led_max) {
count++;
uint8_t val = g_rgb_frame_buffer[row][col];
if (!HAS_ANY_FLAGS(g_led_config.flags[g_led_config.matrix_co[row][col]], params->flags)) continue;
HSV hsv = {170 - qsub8(val, 85), rgb_matrix_config.hsv.s, scale8((qadd8(170, val) - 170) * 3, rgb_matrix_config.hsv.v)};
RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
rgb_matrix_set_color(g_led_config.matrix_co[row][col], rgb.r, rgb.g, rgb.b);
if (decrease_heatmap_values) {
g_rgb_frame_buffer[row][col] = qsub8(val, 1);
}
}
}
}
return rgb_matrix_check_finished_leds(led_max);
}
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP)
|