1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
// Copyright 2021 Paul Cotter (@gr1mr3aver)
// Copyright 2021 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#include "qp.h"
#include "qp_internal.h"
#include "qp_comms.h"
#include "qp_draw.h"
// Utilize 8-way symmetry to draw circles
static bool qp_circle_helper_impl(painter_device_t device, uint16_t centerx, uint16_t centery, uint16_t offsetx, uint16_t offsety, bool filled) {
/*
Circles have the property of 8-way symmetry, so eight pixels can be drawn
for each computed [offsetx,offsety] given the center coordinates
represented by [centerx,centery].
For filled circles, we can draw horizontal lines between each pair of
pixels with the same final value of y.
Two special cases exist and have been optimized:
1) offsetx == offsety (the final point), makes half the coordinates
equivalent, so we can omit them (and the corresponding fill lines)
2) offsetx == 0 (the starting point) means that some horizontal lines
would be a single pixel in length, so we write individual pixels instead.
This also makes half the symmetrical points identical to their twins,
so we only need four points or two points and one line
*/
int16_t xpx = ((int16_t)centerx) + ((int16_t)offsetx);
int16_t xmx = ((int16_t)centerx) - ((int16_t)offsetx);
int16_t xpy = ((int16_t)centerx) + ((int16_t)offsety);
int16_t xmy = ((int16_t)centerx) - ((int16_t)offsety);
int16_t ypx = ((int16_t)centery) + ((int16_t)offsetx);
int16_t ymx = ((int16_t)centery) - ((int16_t)offsetx);
int16_t ypy = ((int16_t)centery) + ((int16_t)offsety);
int16_t ymy = ((int16_t)centery) - ((int16_t)offsety);
if (offsetx == 0) {
if (!qp_internal_setpixel_impl(device, centerx, ypy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, centerx, ymy)) {
return false;
}
if (filled) {
if (!qp_internal_fillrect_helper_impl(device, xpy, centery, xmy, centery)) {
return false;
}
} else {
if (!qp_internal_setpixel_impl(device, xpy, centery)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmy, centery)) {
return false;
}
}
} else if (offsetx == offsety) {
if (filled) {
if (!qp_internal_fillrect_helper_impl(device, xpy, ypy, xmy, ypy)) {
return false;
}
if (!qp_internal_fillrect_helper_impl(device, xpy, ymy, xmy, ymy)) {
return false;
}
} else {
if (!qp_internal_setpixel_impl(device, xpy, ypy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmy, ypy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xpy, ymy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmy, ymy)) {
return false;
}
}
} else {
if (filled) {
if (!qp_internal_fillrect_helper_impl(device, xpx, ypy, xmx, ypy)) {
return false;
}
if (!qp_internal_fillrect_helper_impl(device, xpx, ymy, xmx, ymy)) {
return false;
}
if (!qp_internal_fillrect_helper_impl(device, xpy, ypx, xmy, ypx)) {
return false;
}
if (!qp_internal_fillrect_helper_impl(device, xpy, ymx, xmy, ymx)) {
return false;
}
} else {
if (!qp_internal_setpixel_impl(device, xpx, ypy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmx, ypy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xpx, ymy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmx, ymy)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xpy, ypx)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmy, ypx)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xpy, ymx)) {
return false;
}
if (!qp_internal_setpixel_impl(device, xmy, ymx)) {
return false;
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Quantum Painter External API: qp_circle
bool qp_circle(painter_device_t device, uint16_t x, uint16_t y, uint16_t radius, uint8_t hue, uint8_t sat, uint8_t val, bool filled) {
qp_dprintf("qp_circle: entry\n");
struct painter_driver_t *driver = (struct painter_driver_t *)device;
if (!driver->validate_ok) {
qp_dprintf("qp_circle: fail (validation_ok == false)\n");
return false;
}
// plot the initial set of points for x, y and r
int16_t xcalc = 0;
int16_t ycalc = (int16_t)radius;
int16_t err = ((5 - (radius >> 2)) >> 2);
qp_internal_fill_pixdata(device, (radius * 2) + 1, hue, sat, val);
if (!qp_comms_start(device)) {
qp_dprintf("qp_circle: fail (could not start comms)\n");
return false;
}
bool ret = true;
if (!qp_circle_helper_impl(device, x, y, xcalc, ycalc, filled)) {
ret = false;
}
if (ret) {
while (xcalc < ycalc) {
xcalc++;
if (err < 0) {
err += (xcalc << 1) + 1;
} else {
ycalc--;
err += ((xcalc - ycalc) << 1) + 1;
}
if (!qp_circle_helper_impl(device, x, y, xcalc, ycalc, filled)) {
ret = false;
break;
}
}
}
qp_dprintf("qp_circle: %s\n", ret ? "ok" : "fail");
qp_comms_stop(device);
return ret;
}
|