summaryrefslogtreecommitdiff
path: root/keyboards/moonlander/matrix.c
blob: 3907dcb1fab1c8bd41dcbfa4dbb59051c1787343 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* Copyright 2020 ZSA Technology Labs, Inc <@zsa>
 * Copyright 2020 Jack Humbert <jack.humb@gmail.com>
 * Copyright 2020 Christopher Courtney, aka Drashna Jael're  (@drashna) <drashna@live.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "moonlander.h"
#include "i2c_master.h"

/*
#define MATRIX_ROW_PINS { B10, B11, B12, B13, B14, B15 } outputs
#define MATRIX_COL_PINS { A0, A1, A2, A3, A6, A7, B0 }   inputs
 */
/* matrix state(1:on, 0:off) */
extern matrix_row_t matrix[MATRIX_ROWS];      // debounced values
extern matrix_row_t raw_matrix[MATRIX_ROWS];  // raw values
static matrix_row_t raw_matrix_right[MATRIX_COLS];

#define ROWS_PER_HAND (MATRIX_ROWS / 2)
#ifndef MOONLANDER_I2C_TIMEOUT
#    define MOONLANDER_I2C_TIMEOUT 100
#endif

extern bool mcp23018_leds[3];
extern bool is_launching;

bool           mcp23018_initd = false;
static uint8_t mcp23018_reset_loop;

uint8_t mcp23018_tx[3];
uint8_t mcp23018_rx[1];

void mcp23018_init(void) {
    i2c_init();

    // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 }       outputs
    // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs

    mcp23018_tx[0] = 0x00;        // IODIRA
    mcp23018_tx[1] = 0b00000000;  // A is output
    mcp23018_tx[2] = 0b00111111;  // B is inputs

    if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, MOONLANDER_I2C_TIMEOUT)) {
        dprintf("error hori\n");
    } else {
        mcp23018_tx[0] = 0x0C;        // GPPUA
        mcp23018_tx[1] = 0b10000000;  // A is not pulled-up
        mcp23018_tx[2] = 0b11111111;  // B is pulled-up

        if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, MOONLANDER_I2C_TIMEOUT)) {
            dprintf("error hori\n");
        } else {
            mcp23018_initd = is_launching = true;
        }
    }
}

void matrix_init_custom(void) {
    dprintf("matrix init\n");
    // debug_matrix = true;
    // outputs
    setPinOutput(B10);
    setPinOutput(B11);
    setPinOutput(B12);
    setPinOutput(B13);
    setPinOutput(B14);
    setPinOutput(B15);

    // inputs
    setPinInputLow(A0);
    setPinInputLow(A1);
    setPinInputLow(A2);
    setPinInputLow(A3);
    setPinInputLow(A6);
    setPinInputLow(A7);
    setPinInputLow(B0);

    is_launching = true;
    #ifndef HALFMOON
    mcp23018_init();
    #endif
}

bool matrix_scan_custom(matrix_row_t current_matrix[]) {
    bool changed = false;

    // Try to re-init right side
    if (!mcp23018_initd) {
        if (++mcp23018_reset_loop == 0) {
            // if (++mcp23018_reset_loop >= 1300) {
            // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
            // this will be approx bit more frequent than once per second
            print("trying to reset mcp23018\n");
            mcp23018_init();
            if (!mcp23018_initd) {
                print("right side not responding\n");
            } else {
                print("right side attached\n");
#ifdef RGB_MATRIX_ENABLE
                rgb_matrix_init();
#endif
            }
        }
    }

    matrix_row_t data = 0;
    // actual matrix
    for (uint8_t row = 0; row <= ROWS_PER_HAND; row++) {
        // strobe row
        switch (row) {
            case 0: writePinHigh(B10); break;
            case 1: writePinHigh(B11); break;
            case 2: writePinHigh(B12); break;
            case 3: writePinHigh(B13); break;
            case 4: writePinHigh(B14); break;
            case 5: writePinHigh(B15); break;
            case 6: break; // Left hand has 6 rows
        }

        // right side
        if (mcp23018_initd) {
            // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 }       outputs
            // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs

            // select row
            mcp23018_tx[0] = 0x12;                                                                   // GPIOA
            mcp23018_tx[1] = (0b01111111 & ~(1 << (row))) | ((uint8_t)!mcp23018_leds[2] << 7);       // activate row
            mcp23018_tx[2] = ((uint8_t)!mcp23018_leds[1] << 6) | ((uint8_t)!mcp23018_leds[0] << 7);  // activate row

            if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, MOONLANDER_I2C_TIMEOUT)) {
                dprintf("error hori\n");
                mcp23018_initd = false;
            }

            // read col

            mcp23018_tx[0] = 0x13;  // GPIOB
            if (MSG_OK != i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx[0], &mcp23018_rx[0], 1, MOONLANDER_I2C_TIMEOUT)) {
                dprintf("error vert\n");
                mcp23018_initd = false;
            }

            data = ~(mcp23018_rx[0] & 0b00111111);
            // data = 0x01;
        } else {
            data = 0;
        }

        if (raw_matrix_right[row] != data) {
            raw_matrix_right[row] = data;
            changed         = true;
        }


        // left side
        if (row < ROWS_PER_HAND) {
            // i2c comm incur enough wait time
            if (!mcp23018_initd) {
                // need wait to settle pin state
                matrix_io_delay();
            }
            // read col data
            data = (
                (readPin(A0) << 0 ) |
                (readPin(A1) << 1 ) |
                (readPin(A2) << 2 ) |
                (readPin(A3) << 3 ) |
                (readPin(A6) << 4 ) |
                (readPin(A7) << 5 ) |
                (readPin(B0) << 6 )
            );
            // unstrobe  row
            switch (row) {
                case 0: writePinLow(B10); break;
                case 1: writePinLow(B11); break;
                case 2: writePinLow(B12); break;
                case 3: writePinLow(B13); break;
                case 4: writePinLow(B14); break;
                case 5: writePinLow(B15); break;
                case 6: break;
            }

            if (current_matrix[row] != data) {
                current_matrix[row]    = data;
                changed                = true;
            }
        }
    }
    for (uint8_t row = 0; row < ROWS_PER_HAND; row++) {
        current_matrix[11 - row] = 0;
        for (uint8_t col = 0; col < MATRIX_COLS; col++) {
            current_matrix[11 - row] |= ((raw_matrix_right[6 - col] & (1 << row) ? 1 : 0) << col);
        }
    }
    return changed;
}

// DO NOT REMOVE
// Needed for proper wake/sleep
void matrix_power_up(void) {
    bool temp_launching = is_launching;

    matrix_init_custom();

    is_launching = temp_launching;
    if (!temp_launching) {
        ML_LED_1(false);
        ML_LED_2(false);
        ML_LED_3(false);

        ML_LED_4(false);
        ML_LED_5(false);
        ML_LED_6(false);
    }

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
    }

}

bool is_transport_connected(void) {
    return mcp23018_initd;
}