summaryrefslogtreecommitdiff
path: root/tmk_core/common/chibios/eeprom_stm32.c
diff options
context:
space:
mode:
authorNick Brassel <nick@tzarc.org>2021-08-29 08:20:25 +1000
committerNick Brassel <nick@tzarc.org>2021-08-29 08:20:25 +1000
commitf061ca497464fe85284906fb163a33eaee7a91ef (patch)
tree33ef1bfb529aed382e8526c607c4e18717f92571 /tmk_core/common/chibios/eeprom_stm32.c
parentff65185dec6f97be1eb49f17cea526a0d0bbf3d6 (diff)
parent4bad375d7c09d949a9dcdd4feba147c9c7a67ec6 (diff)
Breaking changes develop merge to master, 2021Q3 edition. (#14196)
Diffstat (limited to 'tmk_core/common/chibios/eeprom_stm32.c')
-rw-r--r--tmk_core/common/chibios/eeprom_stm32.c802
1 files changed, 684 insertions, 118 deletions
diff --git a/tmk_core/common/chibios/eeprom_stm32.c b/tmk_core/common/chibios/eeprom_stm32.c
index ea51989728..5bf852fde1 100644
--- a/tmk_core/common/chibios/eeprom_stm32.c
+++ b/tmk_core/common/chibios/eeprom_stm32.c
@@ -14,185 +14,751 @@
* Artur F.
*
* Modifications for QMK and STM32F303 by Yiancar
+ * Modifications to add flash wear leveling by Ilya Zhuravlev
+ * Modifications to increase flash density by Don Kjer
*/
#include <stdio.h>
-#include <string.h>
+#include <stdbool.h>
+#include "debug.h"
#include "eeprom_stm32.h"
-/*****************************************************************************
- * Allows to use the internal flash to store non volatile data. To initialize
- * the functionality use the EEPROM_Init() function. Be sure that by reprogramming
- * of the controller just affected pages will be deleted. In other case the non
- * volatile data will be lost.
- ******************************************************************************/
+#include "flash_stm32.h"
+
+/*
+ * We emulate eeprom by writing a snapshot compacted view of eeprom contents,
+ * followed by a write log of any change since that snapshot:
+ *
+ * === SIMULATED EEPROM CONTENTS ===
+ *
+ * ┌─ Compacted ┬ Write Log ─┐
+ * │............│[BYTE][BYTE]│
+ * │FFFF....FFFF│[WRD0][WRD1]│
+ * │FFFFFFFFFFFF│[WORD][NEXT]│
+ * │....FFFFFFFF│[BYTE][WRD0]│
+ * ├────────────┼────────────┤
+ * └──PAGE_BASE │ │
+ * PAGE_LAST─┴─WRITE_BASE │
+ * WRITE_LAST ┘
+ *
+ * Compacted contents are the 1's complement of the actual EEPROM contents.
+ * e.g. An 'FFFF' represents a '0000' value.
+ *
+ * The size of the 'compacted' area is equal to the size of the 'emulated' eeprom.
+ * The size of the compacted-area and write log are configurable, and the combined
+ * size of Compacted + WriteLog is a multiple FEE_PAGE_SIZE, which is MCU dependent.
+ * Simulated Eeprom contents are located at the end of available flash space.
+ *
+ * The following configuration defines can be set:
+ *
+ * FEE_DENSITY_PAGES # Total number of pages to use for eeprom simulation (Compact + Write log)
+ * FEE_DENSITY_BYTES # Size of simulated eeprom. (Defaults to half the space allocated by FEE_DENSITY_PAGES)
+ * NOTE: The current implementation does not include page swapping,
+ * and FEE_DENSITY_BYTES will consume that amount of RAM as a cached view of actual EEPROM contents.
+ *
+ * The maximum size of FEE_DENSITY_BYTES is currently 16384. The write log size equals
+ * FEE_DENSITY_PAGES * FEE_PAGE_SIZE - FEE_DENSITY_BYTES.
+ * The larger the write log, the less frequently the compacted area needs to be rewritten.
+ *
+ *
+ * *** General Algorithm ***
+ *
+ * During initialization:
+ * The contents of the Compacted-flash area are loaded and the 1's complement value
+ * is cached into memory (e.g. 0xFFFF in Flash represents 0x0000 in cache).
+ * Write log entries are processed until a 0xFFFF is reached.
+ * Each log entry updates a byte or word in the cache.
+ *
+ * During reads:
+ * EEPROM contents are given back directly from the cache in memory.
+ *
+ * During writes:
+ * The contents of the cache is updated first.
+ * If the Compacted-flash area corresponding to the write address is unprogrammed, the 1's complement of the value is written directly into Compacted-flash
+ * Otherwise:
+ * If the write log is full, erase both the Compacted-flash area and the Write log, then write cached contents to the Compacted-flash area.
+ * Otherwise a Write log entry is constructed and appended to the next free position in the Write log.
+ *
+ *
+ * *** Write Log Structure ***
+ *
+ * Write log entries allow for optimized byte writes to addresses below 128. Writing 0 or 1 words are also optimized when word-aligned.
+ *
+ * === WRITE LOG ENTRY FORMATS ===
+ *
+ * ╔═══ Byte-Entry ══╗
+ * ║0XXXXXXX║YYYYYYYY║
+ * ║ └──┬──┘║└──┬───┘║
+ * ║ Address║ Value ║
+ * ╚════════╩════════╝
+ * 0 <= Address < 0x80 (128)
+ *
+ * ╔ Word-Encoded 0 ╗
+ * ║100XXXXXXXXXXXXX║
+ * ║ │└─────┬─────┘║
+ * ║ │Address >> 1 ║
+ * ║ └── Value: 0 ║
+ * ╚════════════════╝
+ * 0 <= Address <= 0x3FFE (16382)
+ *
+ * ╔ Word-Encoded 1 ╗
+ * ║101XXXXXXXXXXXXX║
+ * ║ │└─────┬─────┘║
+ * ║ │Address >> 1 ║
+ * ║ └── Value: 1 ║
+ * ╚════════════════╝
+ * 0 <= Address <= 0x3FFE (16382)
+ *
+ * ╔═══ Reserved ═══╗
+ * ║110XXXXXXXXXXXXX║
+ * ╚════════════════╝
+ *
+ * ╔═══════════ Word-Next ═══════════╗
+ * ║111XXXXXXXXXXXXX║YYYYYYYYYYYYYYYY║
+ * ║ └─────┬─────┘║└───────┬──────┘║
+ * ║(Address-128)>>1║ ~Value ║
+ * ╚════════════════╩════════════════╝
+ * ( 0 <= Address < 0x0080 (128): Reserved)
+ * 0x80 <= Address <= 0x3FFE (16382)
+ *
+ * Write Log entry ranges:
+ * 0x0000 ... 0x7FFF - Byte-Entry; address is (Entry & 0x7F00) >> 4; value is (Entry & 0xFF)
+ * 0x8000 ... 0x9FFF - Word-Encoded 0; address is (Entry & 0x1FFF) << 1; value is 0
+ * 0xA000 ... 0xBFFF - Word-Encoded 1; address is (Entry & 0x1FFF) << 1; value is 1
+ * 0xC000 ... 0xDFFF - Reserved
+ * 0xE000 ... 0xFFBF - Word-Next; address is (Entry & 0x1FFF) << 1 + 0x80; value is ~(Next_Entry)
+ * 0xFFC0 ... 0xFFFE - Reserved
+ * 0xFFFF - Unprogrammed
+ *
+ */
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Functions -----------------------------------------------------------------*/
+/* These bits are used for optimizing encoding of bytes, 0 and 1 */
+#define FEE_WORD_ENCODING 0x8000
+#define FEE_VALUE_NEXT 0x6000
+#define FEE_VALUE_RESERVED 0x4000
+#define FEE_VALUE_ENCODED 0x2000
+#define FEE_BYTE_RANGE 0x80
+
+// HACK ALERT. This definition may not match your processor
+// To Do. Work out correct value for EEPROM_PAGE_SIZE on the STM32F103CT6 etc
+#if defined(EEPROM_EMU_STM32F303xC)
+# define MCU_STM32F303CC
+#elif defined(EEPROM_EMU_STM32F103xB)
+# define MCU_STM32F103RB
+#elif defined(EEPROM_EMU_STM32F072xB)
+# define MCU_STM32F072CB
+#elif defined(EEPROM_EMU_STM32F042x6)
+# define MCU_STM32F042K6
+#elif !defined(FEE_PAGE_SIZE) || !defined(FEE_DENSITY_PAGES) || !defined(FEE_MCU_FLASH_SIZE)
+# error "not implemented."
+#endif
+
+#if !defined(FEE_PAGE_SIZE) || !defined(FEE_DENSITY_PAGES)
+# if defined(MCU_STM32F103RB) || defined(MCU_STM32F042K6)
+# ifndef FEE_PAGE_SIZE
+# define FEE_PAGE_SIZE 0x400 // Page size = 1KByte
+# endif
+# ifndef FEE_DENSITY_PAGES
+# define FEE_DENSITY_PAGES 2 // How many pages are used
+# endif
+# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE) || defined(MCU_STM32F103RD) || defined(MCU_STM32F303CC) || defined(MCU_STM32F072CB)
+# ifndef FEE_PAGE_SIZE
+# define FEE_PAGE_SIZE 0x800 // Page size = 2KByte
+# endif
+# ifndef FEE_DENSITY_PAGES
+# define FEE_DENSITY_PAGES 4 // How many pages are used
+# endif
+# else
+# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
+# endif
+#endif
+
+#ifndef FEE_MCU_FLASH_SIZE
+# if defined(MCU_STM32F103RB) || defined(MCU_STM32F072CB)
+# define FEE_MCU_FLASH_SIZE 128 // Size in Kb
+# elif defined(MCU_STM32F042K6)
+# define FEE_MCU_FLASH_SIZE 32 // Size in Kb
+# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE)
+# define FEE_MCU_FLASH_SIZE 512 // Size in Kb
+# elif defined(MCU_STM32F103RD)
+# define FEE_MCU_FLASH_SIZE 384 // Size in Kb
+# elif defined(MCU_STM32F303CC)
+# define FEE_MCU_FLASH_SIZE 256 // Size in Kb
+# else
+# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
+# endif
+#endif
+
+#define FEE_XSTR(x) FEE_STR(x)
+#define FEE_STR(x) #x
+
+/* Size of combined compacted eeprom and write log pages */
+#define FEE_DENSITY_MAX_SIZE (FEE_DENSITY_PAGES * FEE_PAGE_SIZE)
+/* Addressable range 16KByte: 0 <-> (0x1FFF << 1) */
+#define FEE_ADDRESS_MAX_SIZE 0x4000
+
+#ifndef EEPROM_START_ADDRESS /* *TODO: Get rid of this check */
+# if FEE_DENSITY_MAX_SIZE > (FEE_MCU_FLASH_SIZE * 1024)
+# pragma message FEE_XSTR(FEE_DENSITY_MAX_SIZE) " > " FEE_XSTR(FEE_MCU_FLASH_SIZE * 1024)
+# error emulated eeprom: FEE_DENSITY_PAGES is greater than available flash size
+# endif
+#endif
+
+/* Size of emulated eeprom */
+#ifdef FEE_DENSITY_BYTES
+# if (FEE_DENSITY_BYTES > FEE_DENSITY_MAX_SIZE)
+# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " > " FEE_XSTR(FEE_DENSITY_MAX_SIZE)
+# error emulated eeprom: FEE_DENSITY_BYTES exceeds FEE_DENSITY_MAX_SIZE
+# endif
+# if (FEE_DENSITY_BYTES == FEE_DENSITY_MAX_SIZE)
+# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " == " FEE_XSTR(FEE_DENSITY_MAX_SIZE)
+# warning emulated eeprom: FEE_DENSITY_BYTES leaves no room for a write log. This will greatly increase the flash wear rate!
+# endif
+# if FEE_DENSITY_BYTES > FEE_ADDRESS_MAX_SIZE
+# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " > " FEE_XSTR(FEE_ADDRESS_MAX_SIZE)
+# error emulated eeprom: FEE_DENSITY_BYTES is greater than FEE_ADDRESS_MAX_SIZE allows
+# endif
+# if ((FEE_DENSITY_BYTES) % 2) == 1
+# error emulated eeprom: FEE_DENSITY_BYTES must be even
+# endif
+#else
+/* Default to half of allocated space used for emulated eeprom, half for write log */
+# define FEE_DENSITY_BYTES (FEE_DENSITY_PAGES * FEE_PAGE_SIZE / 2)
+#endif
+
+/* Size of write log */
+#define FEE_WRITE_LOG_BYTES (FEE_DENSITY_PAGES * FEE_PAGE_SIZE - FEE_DENSITY_BYTES)
+
+/* Start of the emulated eeprom compacted flash area */
+#ifndef FEE_FLASH_BASE
+# define FEE_FLASH_BASE 0x8000000
+#endif
+#define FEE_PAGE_BASE_ADDRESS ((uintptr_t)(FEE_FLASH_BASE) + FEE_MCU_FLASH_SIZE * 1024 - FEE_WRITE_LOG_BYTES - FEE_DENSITY_BYTES)
+/* End of the emulated eeprom compacted flash area */
+#define FEE_PAGE_LAST_ADDRESS (FEE_PAGE_BASE_ADDRESS + FEE_DENSITY_BYTES)
+/* Start of the emulated eeprom write log */
+#define FEE_WRITE_LOG_BASE_ADDRESS FEE_PAGE_LAST_ADDRESS
+/* End of the emulated eeprom write log */
+#define FEE_WRITE_LOG_LAST_ADDRESS (FEE_WRITE_LOG_BASE_ADDRESS + FEE_WRITE_LOG_BYTES)
+
+/* Flash word value after erase */
+#define FEE_EMPTY_WORD ((uint16_t)0xFFFF)
+
+#if defined(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) && (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR >= FEE_DENSITY_BYTES)
+# error emulated eeprom: DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is greater than the FEE_DENSITY_BYTES available
+#endif
+
+/* In-memory contents of emulated eeprom for faster access */
+/* *TODO: Implement page swapping */
+static uint16_t WordBuf[FEE_DENSITY_BYTES / 2];
+static uint8_t *DataBuf = (uint8_t *)WordBuf;
+
+/* Pointer to the first available slot within the write log */
+static uint16_t *empty_slot;
+
+// #define DEBUG_EEPROM_OUTPUT
+
+/*
+ * Debug print utils
+ */
+
+#if defined(DEBUG_EEPROM_OUTPUT)
+
+# define debug_eeprom debug_enable
+# define eeprom_println(s) println(s)
+# define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__);
+
+#else /* NO_DEBUG */
+
+# define debug_eeprom false
+# define eeprom_println(s)
+# define eeprom_printf(fmt, ...)
+
+#endif /* NO_DEBUG */
+
+void print_eeprom(void) {
+#ifndef NO_DEBUG
+ int empty_rows = 0;
+ for (uint16_t i = 0; i < FEE_DENSITY_BYTES; i++) {
+ if (i % 16 == 0) {
+ if (i >= FEE_DENSITY_BYTES - 16) {
+ /* Make sure we display the last row */
+ empty_rows = 0;
+ }
+ /* Check if this row is uninitialized */
+ ++empty_rows;
+ for (uint16_t j = 0; j < 16; j++) {
+ if (DataBuf[i + j]) {
+ empty_rows = 0;
+ break;
+ }
+ }
+ if (empty_rows > 1) {
+ /* Repeat empty row */
+ if (empty_rows == 2) {
+ /* Only display the first repeat empty row */
+ println("*");
+ }
+ i += 15;
+ continue;
+ }
+ xprintf("%04x", i);
+ }
+ if (i % 8 == 0) print(" ");
+
+ xprintf(" %02x", DataBuf[i]);
+ if ((i + 1) % 16 == 0) {
+ println("");
+ }
+ }
+#endif
+}
-uint8_t DataBuf[FEE_PAGE_SIZE];
-/*****************************************************************************
- * Delete Flash Space used for user Data, deletes the whole space between
- * RW_PAGE_BASE_ADDRESS and the last uC Flash Page
- ******************************************************************************/
uint16_t EEPROM_Init(void) {
- // unlock flash
- FLASH_Unlock();
+ /* Load emulated eeprom contents from compacted flash into memory */
+ uint16_t *src = (uint16_t *)FEE_PAGE_BASE_ADDRESS;
+ uint16_t *dest = (uint16_t *)DataBuf;
+ for (; src < (uint16_t *)FEE_PAGE_LAST_ADDRESS; ++src, ++dest) {
+ *dest = ~*src;
+ }
+
+ if (debug_eeprom) {
+ println("EEPROM_Init Compacted Pages:");
+ print_eeprom();
+ println("EEPROM_Init Write Log:");
+ }
+
+ /* Replay write log */
+ uint16_t *log_addr;
+ for (log_addr = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; log_addr < (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS; ++log_addr) {
+ uint16_t address = *log_addr;
+ if (address == FEE_EMPTY_WORD) {
+ break;
+ }
+ /* Check for lowest 128-bytes optimization */
+ if (!(address & FEE_WORD_ENCODING)) {
+ uint8_t bvalue = (uint8_t)address;
+ address >>= 8;
+ DataBuf[address] = bvalue;
+ eeprom_printf("DataBuf[0x%02x] = 0x%02x;\n", address, bvalue);
+ } else {
+ uint16_t wvalue;
+ /* Check if value is in next word */
+ if ((address & FEE_VALUE_NEXT) == FEE_VALUE_NEXT) {
+ /* Read value from next word */
+ if (++log_addr >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
+ break;
+ }
+ wvalue = ~*log_addr;
+ if (!wvalue) {
+ eeprom_printf("Incomplete write at log_addr: 0x%04x;\n", (uint32_t)log_addr);
+ /* Possibly incomplete write. Ignore and continue */
+ continue;
+ }
+ address &= 0x1FFF;
+ address <<= 1;
+ /* Writes to addresses less than 128 are byte log entries */
+ address += FEE_BYTE_RANGE;
+ } else {
+ /* Reserved for future use */
+ if (address & FEE_VALUE_RESERVED) {
+ eeprom_printf("Reserved encoded value at log_addr: 0x%04x;\n", (uint32_t)log_addr);
+ continue;
+ }
+ /* Optimization for 0 or 1 values. */
+ wvalue = (address & FEE_VALUE_ENCODED) >> 13;
+ address &= 0x1FFF;
+ address <<= 1;
+ }
+ if (address < FEE_DENSITY_BYTES) {
+ eeprom_printf("DataBuf[0x%04x] = 0x%04x;\n", address, wvalue);
+ *(uint16_t *)(&DataBuf[address]) = wvalue;
+ } else {
+ eeprom_printf("DataBuf[0x%04x] cannot be set to 0x%04x [BAD ADDRESS]\n", address, wvalue);
+ }
+ }
+ }
- // Clear Flags
- // FLASH_ClearFlag(FLASH_SR_EOP|FLASH_SR_PGERR|FLASH_SR_WRPERR);
+ empty_slot = log_addr;
+
+ if (debug_eeprom) {
+ println("EEPROM_Init Final DataBuf:");
+ print_eeprom();
+ }
return FEE_DENSITY_BYTES;
}
-/*****************************************************************************
- * Erase the whole reserved Flash Space used for user Data
- ******************************************************************************/
-void EEPROM_Erase(void) {
- int page_num = 0;
- // delete all pages from specified start page to the last page
- do {
+/* Clear flash contents (doesn't touch in-memory DataBuf) */
+static void eeprom_clear(void) {
+ FLASH_Unlock();
+
+ for (uint16_t page_num = 0; page_num < FEE_DENSITY_PAGES; ++page_num) {
+ eeprom_printf("FLASH_ErasePage(0x%04x)\n", (uint32_t)(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE)));
FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
- page_num++;
- } while (page_num < FEE_DENSITY_PAGES);
+ }
+
+ FLASH_Lock();
+
+ empty_slot = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS;
+ eeprom_printf("eeprom_clear empty_slot: 0x%08x\n", (uint32_t)empty_slot);
}
-/*****************************************************************************
- * Writes once data byte to flash on specified address. If a byte is already
- * written, the whole page must be copied to a buffer, the byte changed and
- * the manipulated buffer written after PageErase.
- *******************************************************************************/
-uint16_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
- FLASH_Status FlashStatus = FLASH_COMPLETE;
- uint32_t page;
- int i;
+/* Erase emulated eeprom */
+void EEPROM_Erase(void) {
+ eeprom_println("EEPROM_Erase");
+ /* Erase compacted pages and write log */
+ eeprom_clear();
+ /* re-initialize to reset DataBuf */
+ EEPROM_Init();
+}
- // exit if desired address is above the limit (e.G. under 2048 Bytes for 4 pages)
- if (Address > FEE_DENSITY_BYTES) {
- return 0;
+/* Compact write log */
+static uint8_t eeprom_compact(void) {
+ /* Erase compacted pages and write log */
+ eeprom_clear();
+
+ FLASH_Unlock();
+
+ FLASH_Status final_status = FLASH_COMPLETE;
+
+ /* Write emulated eeprom contents from memory to compacted flash */
+ uint16_t *src = (uint16_t *)DataBuf;
+ uintptr_t dest = FEE_PAGE_BASE_ADDRESS;
+ uint16_t value;
+ for (; dest < FEE_PAGE_LAST_ADDRESS; ++src, dest += 2) {
+ value = *src;
+ if (value) {
+ eeprom_printf("FLASH_ProgramHalfWord(0x%04x, 0x%04x)\n", (uint32_t)dest, ~value);
+ FLASH_Status status = FLASH_ProgramHalfWord(dest, ~value);
+ if (status != FLASH_COMPLETE) final_status = status;
+ }
}
- // calculate which page is affected (Pagenum1/Pagenum2...PagenumN)
- page = FEE_ADDR_OFFSET(Address) / FEE_PAGE_SIZE;
+ FLASH_Lock();
- // if current data is 0xFF, the byte is empty, just overwrite with the new one
- if ((*(__IO uint16_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) == FEE_EMPTY_WORD) {
- FlashStatus = FLASH_ProgramHalfWord(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address), (uint16_t)(0x00FF & DataByte));
+ if (debug_eeprom) {
+ println("eeprom_compacted:");
+ print_eeprom();
+ }
+
+ return final_status;
+}
+
+static uint8_t eeprom_write_direct_entry(uint16_t Address) {
+ /* Check if we can just write this directly to the compacted flash area */
+ uintptr_t directAddress = FEE_PAGE_BASE_ADDRESS + (Address & 0xFFFE);
+ if (*(uint16_t *)directAddress == FEE_EMPTY_WORD) {
+ /* Write the value directly to the compacted area without a log entry */
+ uint16_t value = ~*(uint16_t *)(&DataBuf[Address & 0xFFFE]);
+ /* Early exit if a write isn't needed */
+ if (value == FEE_EMPTY_WORD) return FLASH_COMPLETE;
+
+ FLASH_Unlock();
+
+ eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x) [DIRECT]\n", (uint32_t)directAddress, value);
+ FLASH_Status status = FLASH_ProgramHalfWord(directAddress, value);
+
+ FLASH_Lock();
+ return status;
+ }
+ return 0;
+}
+
+static uint8_t eeprom_write_log_word_entry(uint16_t Address) {
+ FLASH_Status final_status = FLASH_COMPLETE;
+
+ uint16_t value = *(uint16_t *)(&DataBuf[Address]);
+ eeprom_printf("eeprom_write_log_word_entry(0x%04x): 0x%04x\n", Address, value);
+
+ /* MSB signifies the lowest 128-byte optimization is not in effect */
+ uint16_t encoding = FEE_WORD_ENCODING;
+ uint8_t entry_size;
+ if (value <= 1) {
+ encoding |= value << 13;
+ entry_size = 2;
} else {
- // Copy Page to a buffer
- memcpy(DataBuf, (uint8_t *)FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE), FEE_PAGE_SIZE); // !!! Calculate base address for the desired page
+ encoding |= FEE_VALUE_NEXT;
+ entry_size = 4;
+ /* Writes to addresses less than 128 are byte log entries */
+ Address -= FEE_BYTE_RANGE;
+ }
+
+ /* if we can't find an empty spot, we must compact emulated eeprom */
+ if (empty_slot > (uint16_t *)(FEE_WRITE_LOG_LAST_ADDRESS - entry_size)) {
+ /* compact the write log into the compacted flash area */
+ return eeprom_compact();
+ }
+
+ /* Word log writes should be word-aligned. Take back a bit */
+ Address >>= 1;
+ Address |= encoding;
+
+ /* ok we found a place let's write our data */
+ FLASH_Unlock();
+
+ /* address */
+ eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, Address);
+ final_status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, Address);
+
+ /* value */
+ if (encoding == (FEE_WORD_ENCODING | FEE_VALUE_NEXT)) {
+ eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, ~value);
+ FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, ~value);
+ if (status != FLASH_COMPLETE) final_status = status;
+ }
+
+ FLASH_Lock();
- // check if new data is differ to current data, return if not, proceed if yes
- if (DataByte == *(__IO uint8_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) {
- return 0;
+ return final_status;
+}
+
+static uint8_t eeprom_write_log_byte_entry(uint16_t Address) {
+ eeprom_printf("eeprom_write_log_byte_entry(0x%04x): 0x%02x\n", Address, DataBuf[Address]);
+
+ /* if couldn't find an empty spot, we must compact emulated eeprom */
+ if (empty_slot >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
+ /* compact the write log into the compacted flash area */
+ return eeprom_compact();
+ }
+
+ /* ok we found a place let's write our data */
+ FLASH_Unlock();
+
+ /* Pack address and value into the same word */
+ uint16_t value = (Address << 8) | DataBuf[Address];
+
+ /* write to flash */
+ eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, value);
+ FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, value);
+
+ FLASH_Lock();
+
+ return status;
+}
+
+uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
+ /* if the address is out-of-bounds, do nothing */
+ if (Address >= FEE_DENSITY_BYTES) {
+ eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [BAD ADDRESS]\n", Address, DataByte);
+ return FLASH_BAD_ADDRESS;
+ }
+
+ /* if the value is the same, don't bother writing it */
+ if (DataBuf[Address] == DataByte) {
+ eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [SKIP SAME]\n", Address, DataByte);
+ return 0;
+ }
+
+ /* keep DataBuf cache in sync */
+ DataBuf[Address] = DataByte;
+ eeprom_printf("EEPROM_WriteDataByte DataBuf[0x%04x] = 0x%02x\n", Address, DataBuf[Address]);
+
+ /* perform the write into flash memory */
+ /* First, attempt to write directly into the compacted flash area */
+ FLASH_Status status = eeprom_write_direct_entry(Address);
+ if (!status) {
+ /* Otherwise append to the write log */
+ if (Address < FEE_BYTE_RANGE) {
+ status = eeprom_write_log_byte_entry(Address);
+ } else {
+ status = eeprom_write_log_word_entry(Address & 0xFFFE);
}
+ }
+ if (status != 0 && status != FLASH_COMPLETE) {
+ eeprom_printf("EEPROM_WriteDataByte [STATUS == %d]\n", status);
+ }
+ return status;
+}
- // manipulate desired data byte in temp data array if new byte is differ to the current
- DataBuf[FEE_ADDR_OFFSET(Address) % FEE_PAGE_SIZE] = DataByte;
+uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord) {
+ /* if the address is out-of-bounds, do nothing */
+ if (Address >= FEE_DENSITY_BYTES) {
+ eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [BAD ADDRESS]\n", Address, DataWord);
+ return FLASH_BAD_ADDRESS;
+ }
- // Erase Page
- FlashStatus = FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE));
+ /* Check for word alignment */
+ FLASH_Status final_status = FLASH_COMPLETE;
+ if (Address % 2) {
+ final_status = EEPROM_WriteDataByte(Address, DataWord);
+ FLASH_Status status = EEPROM_WriteDataByte(Address + 1, DataWord >> 8);
+ if (status != FLASH_COMPLETE) final_status = status;
+ if (final_status != 0 && final_status != FLASH_COMPLETE) {
+ eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
+ }
+ return final_status;
+ }
+
+ /* if the value is the same, don't bother writing it */
+ uint16_t oldValue = *(uint16_t *)(&DataBuf[Address]);
+ if (oldValue == DataWord) {
+ eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [SKIP SAME]\n", Address, DataWord);
+ return 0;
+ }
+
+ /* keep DataBuf cache in sync */
+ *(uint16_t *)(&DataBuf[Address]) = DataWord;
+ eeprom_printf("EEPROM_WriteDataWord DataBuf[0x%04x] = 0x%04x\n", Address, *(uint16_t *)(&DataBuf[Address]));
- // Write new data (whole page) to flash if data has been changed
- for (i = 0; i < (FEE_PAGE_SIZE / 2); i++) {
- if ((__IO uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]) != 0xFFFF) {
- FlashStatus = FLASH_ProgramHalfWord((FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE)) + (i * 2), (uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]));
+ /* perform the write into flash memory */
+ /* First, attempt to write directly into the compacted flash area */
+ final_status = eeprom_write_direct_entry(Address);
+ if (!final_status) {
+ /* Otherwise append to the write log */
+ /* Check if we need to fall back to byte write */
+ if (Address < FEE_BYTE_RANGE) {
+ final_status = FLASH_COMPLETE;
+ /* Only write a byte if it has changed */
+ if ((uint8_t)oldValue != (uint8_t)DataWord) {
+ final_status = eeprom_write_log_byte_entry(Address);
}
+ FLASH_Status status = FLASH_COMPLETE;
+ /* Only write a byte if it has changed */
+ if ((oldValue >> 8) != (DataWord >> 8)) {
+ status = eeprom_write_log_byte_entry(Address + 1);
+ }
+ if (status != FLASH_COMPLETE) final_status = status;
+ } else {
+ final_status = eeprom_write_log_word_entry(Address);
}
}
- return FlashStatus;
+ if (final_status != 0 && final_status != FLASH_COMPLETE) {
+ eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
+ }
+ return final_status;
}
-/*****************************************************************************
- * Read once data byte from a specified address.
- *******************************************************************************/
+
uint8_t EEPROM_ReadDataByte(uint16_t Address) {
uint8_t DataByte = 0xFF;
- // Get Byte from specified address
- DataByte = (*(__IO uint8_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address)));
+ if (Address < FEE_DENSITY_BYTES) {
+ DataByte = DataBuf[Address];
+ }
+
+ eeprom_printf("EEPROM_ReadDataByte(0x%04x): 0x%02x\n", Address, DataByte);
return DataByte;
}
+uint16_t EEPROM_ReadDataWord(uint16_t Address) {
+ uint16_t DataWord = 0xFFFF;
+
+ if (Address < FEE_DENSITY_BYTES - 1) {
+ /* Check word alignment */
+ if (Address % 2) {
+ DataWord = DataBuf[Address] | (DataBuf[Address + 1] << 8);
+ } else {
+ DataWord = *(uint16_t *)(&DataBuf[Address]);
+ }
+ }
+
+ eeprom_printf("EEPROM_ReadDataWord(0x%04x): 0x%04x\n", Address, DataWord);
+
+ return DataWord;
+}
+
/*****************************************************************************
* Wrap library in AVR style functions.
*******************************************************************************/
-uint8_t eeprom_read_byte(const uint8_t *Address) {
- const uint16_t p = (const uint32_t)Address;
- return EEPROM_ReadDataByte(p);
-}
+uint8_t eeprom_read_byte(const uint8_t *Address) { return EEPROM_ReadDataByte((const uintptr_t)Address); }
-void eeprom_write_byte(uint8_t *Address, uint8_t Value) {
- uint16_t p = (uint32_t)Address;
- EEPROM_WriteDataByte(p, Value);
-}
+void eeprom_write_byte(uint8_t *Address, uint8_t Value) { EEPROM_WriteDataByte((uintptr_t)Address, Value); }
-void eeprom_update_byte(uint8_t *Address, uint8_t Value) {
- uint16_t p = (uint32_t)Address;
- EEPROM_WriteDataByte(p, Value);
-}
+void eeprom_update_byte(uint8_t *Address, uint8_t Value) { EEPROM_WriteDataByte((uintptr_t)Address, Value); }
-uint16_t eeprom_read_word(const uint16_t *Address) {
- const uint16_t p = (const uint32_t)Address;
- return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8);
-}
+uint16_t eeprom_read_word(const uint16_t *Address) { return EEPROM_ReadDataWord((const uintptr_t)Address); }
-void eeprom_write_word(uint16_t *Address, uint16_t Value) {
- uint16_t p = (uint32_t)Address;
- EEPROM_WriteDataByte(p, (uint8_t)Value);
- EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
-}
+void eeprom_write_word(uint16_t *Address, uint16_t Value) { EEPROM_WriteDataWord((uintptr_t)Address, Value); }
-void eeprom_update_word(uint16_t *Address, uint16_t Value) {
- uint16_t p = (uint32_t)Address;
- EEPROM_WriteDataByte(p, (uint8_t)Value);
- EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
-}
+void eeprom_update_word(uint16_t *Address, uint16_t Value) { EEPROM_WriteDataWord((uintptr_t)Address, Value); }
uint32_t eeprom_read_dword(const uint32_t *Address) {
- const uint16_t p = (const uint32_t)Address;
- return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8) | (EEPROM_ReadDataByte(p + 2) << 16) | (EEPROM_ReadDataByte(p + 3) << 24);
+ const uint16_t p = (const uintptr_t)Address;
+ /* Check word alignment */
+ if (p % 2) {
+ /* Not aligned */
+ return (uint32_t)EEPROM_ReadDataByte(p) | (uint32_t)(EEPROM_ReadDataWord(p + 1) << 8) | (uint32_t)(EEPROM_ReadDataByte(p + 3) << 24);
+ } else {
+ /* Aligned */
+ return EEPROM_ReadDataWord(p) | (EEPROM_ReadDataWord(p + 2) << 16);
+ }
}
void eeprom_write_dword(uint32_t *Address, uint32_t Value) {
- uint16_t p = (const uint32_t)Address;
- EEPROM_WriteDataByte(p, (uint8_t)Value);
- EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
- EEPROM_WriteDataByte(p + 2, (uint8_t)(Value >> 16));
- EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
-}
-
-void eeprom_update_dword(uint32_t *Address, uint32_t Value) {
- uint16_t p = (const uint32_t)Address;
- uint32_t existingValue = EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8) | (EEPROM_ReadDataByte(p + 2) << 16) | (EEPROM_ReadDataByte(p + 3) << 24);
- if (Value != existingValue) {
+ uint16_t p = (const uintptr_t)Address;
+ /* Check word alignment */
+ if (p % 2) {
+ /* Not aligned */
EEPROM_WriteDataByte(p, (uint8_t)Value);
- EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
- EEPROM_WriteDataByte(p + 2, (uint8_t)(Value >> 16));
+ EEPROM_WriteDataWord(p + 1, (uint16_t)(Value >> 8));
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
+ } else {
+ /* Aligned */
+ EEPROM_WriteDataWord(p, (uint16_t)Value);
+ EEPROM_WriteDataWord(p + 2, (uint16_t)(Value >> 16));
}
}
+void eeprom_update_dword(uint32_t *Address, uint32_t Value) { eeprom_write_dword(Address, Value); }
+
void eeprom_read_block(void *buf, const void *addr, size_t len) {
- const uint8_t *p = (const uint8_t *)addr;
+ const uint8_t *src = (const uint8_t *)addr;
uint8_t * dest = (uint8_t *)buf;
- while (len--) {
- *dest++ = eeprom_read_byte(p++);
+
+ /* Check word alignment */
+ if (len && (uintptr_t)src % 2) {
+ /* Read the unaligned first byte */
+ *dest++ = eeprom_read_byte(src++);
+ --len;
+ }
+
+ uint16_t value;
+ bool aligned = ((uintptr_t)dest % 2 == 0);
+ while (len > 1) {
+ value = eeprom_read_word((uint16_t *)src);
+ if (aligned) {
+ *(uint16_t *)dest = value;
+ dest += 2;
+ } else {
+ *dest++ = value;
+ *dest++ = value >> 8;
+ }
+ src += 2;
+ len -= 2;
+ }
+ if (len) {
+ *dest = eeprom_read_byte(src);
}
}
void eeprom_write_block(const void *buf, void *addr, size_t len) {
- uint8_t * p = (uint8_t *)addr;
- const uint8_t *src = (const uint8_t *)buf;
- while (len--) {
- eeprom_write_byte(p++, *src++);
+ uint8_t * dest = (uint8_t *)addr;
+ const uint8_t *src = (const uint8_t *)buf;
+
+ /* Check word alignment */
+ if (len && (uintptr_t)dest % 2) {
+ /* Write the unaligned first byte */
+ eeprom_write_byte(dest++, *src++);
+ --len;
}
-}
-void eeprom_update_block(const void *buf, void *addr, size_t len) {
- uint8_t * p = (uint8_t *)addr;
- const uint8_t *src = (const uint8_t *)buf;
- while (len--) {
- eeprom_write_byte(p++, *src++);
+ uint16_t value;
+ bool aligned = ((uintptr_t)src % 2 == 0);
+ while (len > 1) {
+ if (aligned) {
+ value = *(uint16_t *)src;
+ } else {
+ value = *(uint8_t *)src | (*(uint8_t *)(src + 1) << 8);
+ }
+ eeprom_write_word((uint16_t *)dest, value);
+ dest += 2;
+ src += 2;
+ len -= 2;
+ }
+
+ if (len) {
+ eeprom_write_byte(dest, *src);
}
}
+
+void eeprom_update_block(const void *buf, void *addr, size_t len) { eeprom_write_block(buf, addr, len); }