summaryrefslogtreecommitdiff
path: root/src/strategy/monte_carlo.rs
blob: 0a51b392d97b418a96d9ed192d2a86e025829f09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use engine::settings::GameSettings;
use engine::command::*;
use engine::geometry::*;
use engine::{GameState, GameStatus, Player};

use rand::{Rng, XorShiftRng, SeedableRng};

const MAX_MOVES: u16 = 400;

use time::{Duration, PreciseTime};

#[cfg(not(feature = "single-threaded"))]
use rayon::prelude::*;

#[cfg(feature = "energy-cutoff")] pub const ENERGY_PRODUCTION_CUTOFF: u16 = 30;
#[cfg(feature = "energy-cutoff")] pub const ENERGY_STORAGE_CUTOFF: u16 = 45;

pub fn choose_move<GS: GameState>(settings: &GameSettings, state: &GS, start_time: &PreciseTime, max_time: Duration) -> Command {
    let mut command_scores = CommandScore::init_command_scores(settings, state);
    let command = simulate_options_to_timeout(&mut command_scores, settings, state, start_time, max_time);

    #[cfg(feature = "benchmarking")]
    {
        let total_iterations: u32 = command_scores.iter().map(|c| c.attempts).sum();
        println!("Iterations: {}", total_iterations);
    }
    
    match command {
        Some(command) => command.command,
        _ => Command::Nothing
    }
}

#[cfg(not(feature = "discard-poor-performers"))]
fn simulate_options_to_timeout<'a, GS: GameState>(command_scores: &'a mut Vec<CommandScore>, settings: &GameSettings, state: &GS, start_time: &PreciseTime, max_time: Duration) -> Option<&'a CommandScore> {
    loop {
        simulate_all_options_once(command_scores, settings, state);
        if start_time.to(PreciseTime::now()) > max_time {
            break;
        }
    }
    command_scores.iter().max_by_key(|&c| c.win_ratio())
}

#[cfg(feature = "discard-poor-performers")]
fn simulate_options_to_timeout<'a, GS: GameState>(command_scores: &'a mut Vec<CommandScore>, settings: &GameSettings, state: &GS, start_time: &PreciseTime, max_time: Duration) -> Option<&'a CommandScore> {
    use std::cmp;
    
    let maxes = [max_time / 4, max_time / 2, max_time * 3 / 4, max_time];
    for (i, &max) in maxes.iter().enumerate() {
        let new_length = cmp::max(20, command_scores.len() / (2usize.pow(i as u32)));
        let active_scores = &mut command_scores[0..new_length];
        loop {
            simulate_all_options_once(active_scores, settings, state);
            if start_time.to(PreciseTime::now()) > max {
                break;
            }
        }
        active_scores.sort_unstable_by_key(|c| -c.win_ratio());
    }
    command_scores.first()
}

#[cfg(feature = "single-threaded")]
fn simulate_all_options_once<GS: GameState>(command_scores: &mut[CommandScore], settings: &GameSettings, state: &GS) {
    command_scores.iter_mut()
        .for_each(|score| {
            let mut rng = XorShiftRng::from_seed(score.next_seed);
            simulate_to_endstate(score, settings, state, &mut rng);
        });
}

#[cfg(not(feature = "single-threaded"))]
fn simulate_all_options_once<GS: GameState>(command_scores: &mut[CommandScore], settings: &GameSettings, state: &GS) {
    command_scores.par_iter_mut()
        .for_each(|score| {
            let mut rng = XorShiftRng::from_seed(score.next_seed);
            simulate_to_endstate(score, settings, state, &mut rng);
        });
}

fn simulate_to_endstate<R: Rng, GS: GameState>(command_score: &mut CommandScore, settings: &GameSettings, state: &GS, rng: &mut R) {
    let mut state_mut = state.clone();
    
    let opponent_first = random_opponent_move(settings, &state_mut, rng);
    let mut status = state_mut.simulate(settings, command_score.command, opponent_first);
    
    for _ in 0..MAX_MOVES {
        if status != GameStatus::Continue {
            break;
        }

        let player_command = random_player_move(settings, &state_mut, rng);
        let opponent_command = random_opponent_move(settings, &state_mut, rng);
        status = state_mut.simulate(settings, player_command, opponent_command);
    }

    let next_seed = [rng.next_u32(), rng.next_u32(), rng.next_u32(), rng.next_u32()];
    match status {
        GameStatus::PlayerWon => command_score.add_victory(next_seed),
        GameStatus::OpponentWon => command_score.add_defeat(next_seed),
        GameStatus::Continue => command_score.add_stalemate(next_seed),
        GameStatus::Draw => command_score.add_draw(next_seed)
    }
}

fn random_player_move<R: Rng, GS: GameState>(settings: &GameSettings, state: &GS, rng: &mut R) -> Command {
    let all_buildings = sensible_buildings(settings, &state.player(), state.player_has_max_teslas());
    random_move(&all_buildings, rng, state.unoccupied_player_cell_count(), |i| state.location_of_unoccupied_player_cell(i))
}

fn random_opponent_move<R: Rng, GS: GameState>(settings: &GameSettings, state: &GS, rng: &mut R) -> Command {
    let all_buildings = sensible_buildings(settings, &state.opponent(), state.opponent_has_max_teslas());
    random_move(&all_buildings, rng, state.unoccupied_opponent_cell_count(), |i| state.location_of_unoccupied_opponent_cell(i))
}

fn random_move<R: Rng, F:Fn(usize)->Point>(all_buildings: &[BuildingType], rng: &mut R, free_positions_count: usize, get_point: F) -> Command {
    let building_command_count = free_positions_count*all_buildings.len();
    let nothing_count = 1;

    let number_of_commands = building_command_count + nothing_count;
    
    let choice_index = rng.gen_range(0, number_of_commands);

    if choice_index == number_of_commands - 1 {
        Command::Nothing
    } else {
        Command::Build(
            get_point(choice_index/all_buildings.len()),
            all_buildings[choice_index%all_buildings.len()]
        )
    }
}

#[derive(Debug)]
struct CommandScore {
    command: Command,
    victories: u32,
    defeats: u32,
    draws: u32,
    stalemates: u32,
    attempts: u32,
    next_seed: [u32; 4]
}

impl CommandScore {
    fn new(command: Command) -> CommandScore {
        CommandScore {
            command,
            victories: 0,
            defeats: 0,
            draws: 0,
            stalemates: 0,
            attempts: 0,
            next_seed: [0x7b6a_e1f4, 0x413c_e90f, 0x6781_6799, 0x770a_6bda]
        }
    }

    fn add_victory(&mut self, next_seed: [u32; 4]) {
        self.victories += 1;
        self.attempts += 1;
        self.next_seed = next_seed;
    }

    fn add_defeat(&mut self, next_seed: [u32; 4]) {
        self.defeats += 1;
        self.attempts += 1;
        self.next_seed = next_seed;
    }

    fn add_draw(&mut self, next_seed: [u32; 4]) {
        self.draws += 1;
        self.attempts += 1;
        self.next_seed = next_seed;
    }

    fn add_stalemate(&mut self, next_seed: [u32; 4]) {
        self.stalemates += 1;
        self.attempts += 1;
        self.next_seed = next_seed;
    }

    fn win_ratio(&self) -> i32 {
        (self.victories as i32 - self.defeats as i32) * 10000 / (self.attempts as i32)
    }
    
    fn init_command_scores<GS: GameState>(settings: &GameSettings, state: &GS) -> Vec<CommandScore> {
        let all_buildings = sensible_buildings(settings, &state.player(), state.player_has_max_teslas());

        let unoccupied_cells = (0..state.unoccupied_player_cell_count()).map(|i| state.location_of_unoccupied_player_cell(i));

        let building_command_count = unoccupied_cells.len()*all_buildings.len();
        let nothing_count = 1;
        
        let mut commands = Vec::with_capacity(building_command_count + nothing_count);
        commands.push(CommandScore::new(Command::Nothing));

        for position in unoccupied_cells {
            for &building in &all_buildings {
                commands.push(CommandScore::new(Command::Build(position, building)));
            }
        }

        commands
    }
}

#[cfg(not(feature = "energy-cutoff"))]
fn sensible_buildings(settings: &GameSettings, player: &Player, has_max_teslas: bool) -> Vec<BuildingType> {
    let mut result = Vec::with_capacity(4);
    for b in BuildingType::all().iter() {
        let building_setting = settings.building_settings(*b);
        let affordable = building_setting.price <= player.energy;
        let is_tesla = *b == BuildingType::Tesla;
        if affordable && (!is_tesla || !has_max_teslas) {
            result.push(*b);
        }
    }
    result
}


#[cfg(feature = "energy-cutoff")]
fn sensible_buildings(settings: &GameSettings, player: &Player, has_max_teslas: bool) -> Vec<BuildingType> {
    let mut result = Vec::with_capacity(4);
    let needs_energy = player.energy_generated <= ENERGY_PRODUCTION_CUTOFF ||
        player.energy <= ENERGY_STORAGE_CUTOFF;
    
    for b in BuildingType::all().iter() {
        let building_setting = settings.building_settings(*b);
        let affordable = building_setting.price <= player.energy;
        let energy_producing = building_setting.energy_generated_per_turn > 0;
        let is_tesla = *b == BuildingType::Tesla;
        if affordable && (!energy_producing || needs_energy) && (!is_tesla || !has_max_teslas) {
            result.push(*b);
        }
    }
    result
}