summaryrefslogtreecommitdiff
path: root/src/strategy.rs
blob: 502e9f2b6da807dca33dad00822b8b72edc6d642 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
use crate::command::{Command, Action};
use crate::game::{GameBoard, SimulationOutcome};

use std::cmp;
use std::collections::HashMap;
use std::ops::*;
use time::{Duration, PreciseTime};

use rand;
use rand::prelude::*;

pub fn choose_move(state: &GameBoard, previous_root: Option<Node>, start_time: &PreciseTime, max_time: Duration) -> (Command, Node) {
    let mut root_node = match previous_root {
        None => Node {
            state: state.clone(),
            score_sum: ScoreSum::new(),
            player_score_sums: [HashMap::new(), HashMap::new()],
            unexplored: mcts_move_combo(state),
            children: HashMap::new(),
        },
        Some(mut node) => {
            node.children.drain()
                .map(|(_k, n)| n)
                .find(|n| n.state == *state)
                .unwrap_or_else(|| {
                    eprintln!("Previous round did not appear in the cache");
                    Node {
                        state: state.clone(),
                        score_sum: ScoreSum::new(),
                        player_score_sums: [HashMap::new(), HashMap::new()],
                        unexplored: mcts_move_combo(state),
                        children: HashMap::new(),
                    }
                })
        }        
    };

    while start_time.to(PreciseTime::now()) < max_time {
        let _ = mcts(&mut root_node);
    }

    eprintln!("Number of simulations: {}", root_node.score_sum.visit_count);
    for (command, score_sum) in &root_node.player_score_sums[0] {
        eprintln!(
            "{} = {} ({} visits)",
            command,
            score_sum.avg().val,
            score_sum.visit_count
        );
    }

    let chosen_command = best_player_move(&root_node);

    root_node.children.retain(|[c1, _], _| *c1 == chosen_command);
        
    (chosen_command, root_node)
}

pub struct Node {
    state: GameBoard,
    score_sum: ScoreSum,
    player_score_sums: [HashMap<Command, ScoreSum>; 2],
    unexplored: Vec<[Command; 2]>,
    children: HashMap<[Command; 2], Node>,
}

#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
struct Score {
    val: f32,
}

impl AddAssign for Score {
    fn add_assign(&mut self, other: Self) {
        self.val = self.val + other.val;
    }
}

impl Div<u32> for Score {
    type Output = Self;
    fn div(self, other: u32) -> Self {
        Score {
            val: self.val / other as f32,
        }
    }
}

impl cmp::Eq for Score {}
impl cmp::Ord for Score {
    fn cmp(&self, other: &Score) -> cmp::Ordering {
        self.val
            .partial_cmp(&other.val)
            .unwrap_or(cmp::Ordering::Equal)
    }
}

struct ScoreSum {
    sum: Score,
    visit_count: u32,
}

impl ScoreSum {
    fn new() -> ScoreSum {
        ScoreSum {
            sum: Score { val: 0. },
            visit_count: 0,
        }
    }
    fn with_initial(score: Score) -> ScoreSum {
        ScoreSum {
            sum: score,
            visit_count: 1,
        }
    }
    fn avg(&self) -> Score {
        self.sum / self.visit_count
    }
}

impl AddAssign<Score> for ScoreSum {
    fn add_assign(&mut self, other: Score) {
        self.sum += other;
        self.visit_count = self.visit_count.saturating_add(1);
    }
}

fn mcts(node: &mut Node) -> Score {
    if node.state.outcome != SimulationOutcome::Continue {
        score(&node.state)
    } else if let Some(commands) = node.unexplored.pop() {
        let mut new_state = node.state.clone();
        new_state.simulate(commands);
        let score = rollout(&new_state);
        let unexplored = if new_state.outcome == SimulationOutcome::Continue {
            mcts_move_combo(&new_state)
        } else {
            Vec::new()
        };

        let new_node = Node {
            state: new_state,
            score_sum: ScoreSum::with_initial(score),
            player_score_sums: [HashMap::new(), HashMap::new()],
            unexplored,
            children: HashMap::new(),
        };
        node.children.insert(commands, new_node);

        update(node, commands, score);
        score
    } else {
        let commands = choose_existing(node);
        let score = mcts(
            node.children
                .get_mut(&commands)
                .expect("The existing node hasn't been tried yet"),
        );
        update(node, commands, score);
        score
    }
}

fn mcts_move_combo(state: &GameBoard) -> Vec<[Command; 2]> {
    let player_moves = valid_moves(state, 0);
    let opponent_moves = valid_moves(state, 1);
    debug_assert!(player_moves.len() > 0, "No player moves");
    debug_assert!(player_moves.len() > 0, "No opponent moves");
    
    let mut result = Vec::with_capacity(player_moves.len() * opponent_moves.len());
    for p in &player_moves {
        for o in &opponent_moves {
            result.push([*p, *o]);
        }
    }

    result
}

fn best_player_move(node: &Node) -> Command {
    node.player_score_sums[0]
        .iter()
        .max_by_key(|(_command, score_sum)| score_sum.avg())
        .map(|(command, _score_sum)| *command)
        .unwrap_or_else(|| Command::new(Action::DoNothing))
}

fn score(state: &GameBoard) -> Score {
    Score {
        val: match state.outcome {
            SimulationOutcome::PlayerWon(0) => 500.,
            SimulationOutcome::PlayerWon(1) => -500.,
            _ => (state.players[0].score() - state.players[1].score()) as f32,
        }
    }
}

fn rollout(state: &GameBoard) -> Score {
    let mut s = state.clone();
    let mut rng = rand::thread_rng();
    while s.outcome == SimulationOutcome::Continue {
        let player_moves = rollout_moves(&s, 0);
        let opponent_moves = rollout_moves(&s, 1);

        s.simulate([
            player_moves
                .choose(&mut rng)
                .cloned()
                .unwrap_or_else(|| Command::new(Action::DoNothing)),
            opponent_moves
                .choose(&mut rng)
                .cloned()
                .unwrap_or_else(|| Command::new(Action::DoNothing)),
        ]);
    }

    score(&s)
}

fn choose_existing(node: &Node) -> [Command; 2] {
    [choose_one_existing(node, 0), choose_one_existing(node, 1)]
}

fn choose_one_existing(node: &Node, player_index: usize) -> Command {
    let ln_n = (node.score_sum.visit_count as f32).ln();
    let c = 100.;
    let multiplier = if player_index == 0 { 1. } else { -1. };
    node.player_score_sums[player_index]
        .iter()
        .max_by_key(|(_command, score_sum)| {
            (multiplier * (score_sum.avg().val + c * (ln_n / score_sum.visit_count as f32).sqrt()))
                as i32
        })
        .map(|(command, _score_sum)| *command)
        .unwrap_or_else(|| Command::new(Action::DoNothing))
}

fn update(node: &mut Node, commands: [Command; 2], score: Score) {
    *node.player_score_sums[0]
        .entry(commands[0])
        .or_insert_with(ScoreSum::new) += score;
    *node.player_score_sums[1]
        .entry(commands[1])
        .or_insert_with(ScoreSum::new) += score;
    node.score_sum += score;
}

fn rollout_moves(state: &GameBoard, player_index: usize) -> Vec<Command> {
    // TODO: Have this return one move, chosen randomly?
    // TODO: Allow new select / bomb moves
    if let Some(worm) = state.players[player_index].active_worm() {

        let shoots = state.sensible_shoot_commands(player_index, worm.position, worm.weapon_range);

        if !shoots.is_empty() {
            return shoots.into_iter().collect();
        }

        state.valid_move_commands(player_index).into_iter().collect()
    } else {
        [Command::new(Action::DoNothing)].into_iter().cloned().collect()
    }
}

fn valid_moves(state: &GameBoard, player_index: usize) -> Vec<Command> {
    state.valid_shoot_commands(player_index)
        .iter()
        .chain(state.valid_move_commands(player_index).iter())
        .chain(state.valid_bomb_commands(player_index).iter())
        .cloned()
        .collect()
}