1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
use nom::{
branch::alt,
bytes::complete::tag,
character::complete::{char as nom_char, line_ending, not_line_ending},
combinator::value,
multi::{many1, separated_list1},
sequence::{delimited, pair},
IResult,
};
use std::{cmp, collections::HashSet, fs};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let input = fs::read_to_string("inputs/day_23.txt")?;
let maze = parse_maze(&input).unwrap().1;
dbg!(find_shortest_path(&maze).cost);
Ok(())
}
fn find_shortest_path(maze: &Maze) -> Move {
let mut visited = HashSet::new();
visited.insert(maze.clone());
let mut frontier = vec![Move {
next_state: maze.clone(),
cost: 0,
}];
let mut best_so_far: Option<Move> = None;
while let Some(current) = frontier.pop() {
if let Some(best_so_far) = &best_so_far {
if current.cost >= best_so_far.cost {
return best_so_far.clone();
}
}
let next_moves: Vec<Move> = current
.next_state
.valid_moves()
.into_iter()
.map(|next| Move {
cost: next.cost + current.cost,
..next
})
.collect();
for next in next_moves {
if next.next_state.is_complete() {
best_so_far = if let Some(best_so_far) = best_so_far {
if best_so_far.cost < next.cost {
Some(best_so_far)
} else {
Some(next.clone())
}
} else {
Some(next.clone())
};
} else if !visited.contains(&next.next_state) {
visited.insert(next.next_state.clone());
frontier.push(next);
}
}
frontier.sort_unstable_by(|a, b| b.cost.cmp(&a.cost));
}
best_so_far.expect("There is no path through!")
}
#[derive(Debug, Clone)]
struct Move {
next_state: Maze,
cost: usize,
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
struct Maze {
corridor: Vec<Option<usize>>,
rooms: Vec<Room>,
}
impl Maze {
fn is_complete(&self) -> bool {
self.rooms.iter().all(|room| room.is_complete())
}
fn valid_moves(&self) -> Vec<Move> {
let mut valid_moves = Vec::new();
for i in 0..self.corridor.len() {
if let Some(shrimp) = self.corridor[i] {
let target_room = &self.rooms[shrimp / 2 - 1];
if target_room.can_enter() {
let route_free = (cmp::min(shrimp, i)..=cmp::max(shrimp, i))
.all(|route_i| route_i == i || self.corridor[route_i].is_none());
if route_free {
let mut next_state = self.clone();
next_state.corridor[i] = None;
let next_room = &mut next_state.rooms[shrimp / 2 - 1];
let room_depth = next_room
.max_free()
.expect("no space in room, but we checked!");
next_room.contents[room_depth] = Some(shrimp);
let distance = room_depth + 1 + cmp::max(shrimp, i) - cmp::min(shrimp, i);
let cost = calculate_cost(shrimp, distance);
valid_moves.push(Move { next_state, cost });
}
}
}
}
for (room_i, room) in self
.rooms
.iter()
.enumerate()
.filter(|(_, room)| !room.can_enter())
{
if let Some((room_depth, shrimp)) = room
.contents
.iter()
.enumerate()
.filter_map(|(room_depth, maybe_shrimp)| {
maybe_shrimp.map(|shrimp| (room_depth, shrimp))
})
.next()
{
for corridor_i in 0..self.corridor.len() {
let in_entrance = self.rooms.iter().any(|room| room.entrance == corridor_i);
let route_free = (cmp::min(room.entrance, corridor_i)
..=cmp::max(room.entrance, corridor_i))
.all(|route_i| self.corridor[route_i].is_none());
if !in_entrance && route_free {
let mut next_state = self.clone();
next_state.corridor[corridor_i] = Some(shrimp);
next_state.rooms[room_i].contents[room_depth] = None;
let distance = room_depth + 1 + cmp::max(room.entrance, corridor_i)
- cmp::min(room.entrance, corridor_i);
let cost = calculate_cost(shrimp, distance);
valid_moves.push(Move { next_state, cost });
}
}
}
}
valid_moves
}
}
fn calculate_cost(shrimp: usize, distance: usize) -> usize {
let shrimp_cost = match shrimp {
2 => 1,
4 => 10,
6 => 100,
8 => 1000,
_ => panic!("Unknown shrimp"),
};
shrimp_cost * distance
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
struct Room {
entrance: usize,
contents: Vec<Option<usize>>,
}
impl Room {
fn is_complete(&self) -> bool {
self.contents
.iter()
.all(|slot| slot == &Some(self.entrance))
}
fn can_enter(&self) -> bool {
self.contents
.iter()
.all(|slot| slot.is_none() || slot == &Some(self.entrance))
}
fn max_free(&self) -> Option<usize> {
self.contents.iter().rposition(|slot| slot.is_none())
}
}
fn parse_maze(input: &str) -> IResult<&str, Maze> {
let (input, _) = pair(not_line_ending, line_ending)(input)?; // skip first line
let (input, corridor) = delimited(nom_char('#'), many1(corridor_contents), tag("#\n"))(input)?;
let (input, rooms_line_1) = delimited(
tag("###"),
separated_list1(nom_char('#'), corridor_contents),
tag("###\n"),
)(input)?;
let (input, rooms_line_2) = delimited(
tag(" #"),
separated_list1(nom_char('#'), corridor_contents),
tag("#\n"),
)(input)?;
let rooms = vec![
Room {
entrance: 2,
contents: vec![rooms_line_1[0], Some(8), Some(8), rooms_line_2[0]],
},
Room {
entrance: 4,
contents: vec![rooms_line_1[1], Some(6), Some(4), rooms_line_2[1]],
},
Room {
entrance: 6,
contents: vec![rooms_line_1[2], Some(4), Some(2), rooms_line_2[2]],
},
Room {
entrance: 8,
contents: vec![rooms_line_1[3], Some(2), Some(6), rooms_line_2[3]],
},
];
Ok((input, Maze { corridor, rooms }))
}
fn corridor_contents(input: &str) -> IResult<&str, Option<usize>> {
alt((
value(None, nom_char('.')),
value(Some(2), nom_char('A')),
value(Some(4), nom_char('B')),
value(Some(6), nom_char('C')),
value(Some(8), nom_char('D')),
))(input)
}
|