1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
use nom::{
branch::alt,
bytes::complete::tag,
character::complete::{i32 as nom_i32, line_ending},
combinator::{map, value},
multi::separated_list1,
sequence::tuple,
IResult,
};
use std::{cmp, fs};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let input = fs::read_to_string("inputs/day_22.txt")?;
let instructions = parse_instructions(&input).unwrap().1;
{
let bounds_50 = Block {
min_x: -50,
max_x: 51,
min_y: -50,
max_y: 51,
min_z: -50,
max_z: 51,
};
let mut octtree_50 = OctTree::default();
for instruction in &instructions {
octtree_50.set_block(&bounds_50, &instruction.bounds, instruction.new_state);
}
dbg!(octtree_50.count_on_blocks(&bounds_50));
}
{
let problem_boundary = Block {
min_x: instructions
.iter()
.map(|i| i.bounds.min_x)
.min()
.unwrap_or(0),
max_x: instructions
.iter()
.map(|i| i.bounds.max_x)
.max()
.unwrap_or(0),
min_y: instructions
.iter()
.map(|i| i.bounds.min_y)
.min()
.unwrap_or(0),
max_y: instructions
.iter()
.map(|i| i.bounds.max_y)
.max()
.unwrap_or(0),
min_z: instructions
.iter()
.map(|i| i.bounds.min_z)
.min()
.unwrap_or(0),
max_z: instructions
.iter()
.map(|i| i.bounds.max_z)
.max()
.unwrap_or(0),
}
.expand_to_power_cube();
// This chunking and adding partial solutions is necessary
// because I can't fit the whole thing in memory at once :(
// It runs really slowly.
let mut count = 0;
for chunk_index in 0..8 {
let problem_boundary = problem_boundary.oct_chunk(chunk_index);
for chunk_index in 0..8 {
let problem_boundary = problem_boundary.oct_chunk(chunk_index);
for chunk_index in 0..8 {
let problem_boundary = problem_boundary.oct_chunk(chunk_index);
let mut octtree = OctTree::default();
for instruction in &instructions {
octtree.set_block(
&problem_boundary,
&instruction.bounds,
instruction.new_state,
);
}
count += dbg!(octtree.count_on_blocks(&problem_boundary));
}
}
}
dbg!(count);
}
Ok(())
}
#[derive(Default, Clone)]
struct OctTree {
data: OctTreeData,
}
impl OctTree {
fn set_block(&mut self, self_bounds: &Block, bounds: &Block, new_val: bool) {
if bounds.completely_covers(self_bounds) {
self.data = new_val.into();
} else if bounds.intersects(self_bounds) {
match &mut self.data {
OctTreeData::AllOff => {
if new_val {
self.split(self_bounds);
self.set_block(self_bounds, bounds, new_val);
}
}
OctTreeData::AllOn => {
if !new_val {
self.split(self_bounds);
self.set_block(self_bounds, bounds, new_val);
}
}
OctTreeData::BitSet(ref mut bits) => {
let min_x = cmp::max(self_bounds.min_x, bounds.min_x);
let max_x = cmp::min(self_bounds.max_x, bounds.max_x);
let min_x_index = (min_x - self_bounds.min_x) as usize;
let max_x_index = min_x_index + (max_x - min_x) as usize;
let min_y = cmp::max(self_bounds.min_y, bounds.min_y);
let max_y = cmp::min(self_bounds.max_y, bounds.max_y);
let min_y_index = (min_y - self_bounds.min_y) as usize;
let max_y_index = min_y_index + (max_y - min_y) as usize;
let min_z = cmp::max(self_bounds.min_z, bounds.min_z);
let max_z = cmp::min(self_bounds.max_z, bounds.max_z);
let min_z_index = (min_z - self_bounds.min_z) as usize;
let max_z_index = min_z_index + (max_z - min_z) as usize;
for z_index in min_z_index..max_z_index {
let z_bit_index = z_index << 4;
for y_index in min_y_index..max_y_index {
let y_bit_index = y_index << 2;
for x_index in min_x_index..max_x_index {
let x_bit_index = x_index;
let bit_mask = 1u64 << (z_bit_index + y_bit_index + x_bit_index);
if new_val {
*bits |= bit_mask;
} else {
*bits &= !bit_mask;
}
}
}
}
if *bits == 0 {
self.data = OctTreeData::AllOff;
} else if *bits == !0u64 {
self.data = OctTreeData::AllOn;
}
}
OctTreeData::Diverse(ref mut subtrees) => {
for (sub_index, sub) in subtrees.iter_mut().enumerate() {
sub.set_block(&self_bounds.oct_chunk(sub_index as u8), bounds, new_val);
}
if subtrees
.iter()
.all(|sub| matches!(sub.data, OctTreeData::AllOn))
{
self.data = OctTreeData::AllOn;
} else if subtrees
.iter()
.all(|sub| matches!(sub.data, OctTreeData::AllOff))
{
self.data = OctTreeData::AllOff;
}
}
};
}
}
fn split(&mut self, self_bounds: &Block) {
assert!(!matches!(self.data, OctTreeData::Diverse(_)));
if self_bounds.volume() == 64 {
let new_bitset = match self.data {
OctTreeData::AllOn => !0u64,
OctTreeData::AllOff => 0,
_ => panic!("weird split"),
};
self.data = OctTreeData::BitSet(new_bitset);
} else {
let template = OctTree {
data: self.data.clone(),
};
self.data = OctTreeData::Diverse(Box::new([
template.clone(),
template.clone(),
template.clone(),
template.clone(),
template.clone(),
template.clone(),
template.clone(),
template.clone(),
]));
}
}
fn count_on_blocks(&self, self_bounds: &Block) -> usize {
match &self.data {
OctTreeData::AllOff => 0,
OctTreeData::AllOn => self_bounds.volume(),
OctTreeData::BitSet(bitset) => bitset.count_ones() as usize,
OctTreeData::Diverse(subtrees) => subtrees
.iter()
.enumerate()
.map(|(index, sub)| sub.count_on_blocks(&self_bounds.oct_chunk(index as u8)))
.sum(),
}
}
}
#[derive(Clone)]
enum OctTreeData {
AllOff,
AllOn,
BitSet(u64),
Diverse(Box<[OctTree; 8]>),
}
impl Default for OctTreeData {
fn default() -> OctTreeData {
Self::AllOff
}
}
impl From<bool> for OctTreeData {
fn from(b: bool) -> Self {
if b {
Self::AllOn
} else {
Self::AllOff
}
}
}
#[derive(Debug)]
struct Instruction {
new_state: bool,
bounds: Block,
}
#[derive(Debug, Clone)]
struct Block {
min_x: i32,
max_x: i32,
min_y: i32,
max_y: i32,
min_z: i32,
max_z: i32,
}
impl Block {
fn volume(&self) -> usize {
let x = (self.max_x - self.min_x) as usize;
let y = (self.max_y - self.min_y) as usize;
let z = (self.max_z - self.min_z) as usize;
x * y * z
}
fn completely_covers(&self, other: &Self) -> bool {
self.min_x <= other.min_x
&& self.max_x >= other.max_x
&& self.min_y <= other.min_y
&& self.max_y >= other.max_y
&& self.min_z <= other.min_z
&& self.max_z >= other.max_z
}
fn intersects(&self, other: &Self) -> bool {
if self.max_x <= other.min_x
|| self.min_x >= other.max_x
|| self.max_y <= other.min_y
|| self.min_y >= other.max_y
|| self.max_z <= other.min_z
|| self.min_z >= other.max_z
{
false
} else {
true
}
}
fn oct_chunk(&self, chunk: u8) -> Block {
let lower_x = (chunk & 1) == 0;
let lower_y = (chunk & 2) == 0;
let lower_z = (chunk & 4) == 0;
let mid_x = (self.min_x + self.max_x) / 2;
let mid_y = (self.min_y + self.max_y) / 2;
let mid_z = (self.min_z + self.max_z) / 2;
Block {
min_x: if lower_x { self.min_x } else { mid_x },
max_x: if lower_x { mid_x } else { self.max_x },
min_y: if lower_y { self.min_y } else { mid_y },
max_y: if lower_y { mid_y } else { self.max_y },
min_z: if lower_z { self.min_z } else { mid_z },
max_z: if lower_z { mid_z } else { self.max_z },
}
}
fn expand_to_power_cube(&self) -> Block {
let mag_x = self.max_x - self.min_x;
let mag_y = self.max_y - self.min_y;
let mag_z = self.max_z - self.min_z;
let mag_max = cmp::max(mag_x, cmp::max(mag_y, mag_z));
let first_power_of_2 = (0..)
.map(|pow| 2_i32.pow(pow))
.filter(|pow_size| *pow_size >= mag_max)
.next()
.unwrap();
Block {
min_x: self.min_x,
max_x: self.max_x + first_power_of_2 - mag_x,
min_y: self.min_y,
max_y: self.max_y + first_power_of_2 - mag_y,
min_z: self.min_z,
max_z: self.max_z + first_power_of_2 - mag_z,
}
}
}
fn parse_instructions(input: &str) -> IResult<&str, Vec<Instruction>> {
separated_list1(line_ending, parse_instruction)(input)
}
fn parse_instruction(input: &str) -> IResult<&str, Instruction> {
map(
tuple((
alt((value(true, tag("on ")), value(false, tag("off ")))),
parse_block,
)),
|(new_state, bounds)| Instruction { new_state, bounds },
)(input)
}
fn parse_block(input: &str) -> IResult<&str, Block> {
map(
tuple((
tag("x="),
nom_i32,
tag(".."),
nom_i32,
tag(",y="),
nom_i32,
tag(".."),
nom_i32,
tag(",z="),
nom_i32,
tag(".."),
nom_i32,
)),
|(
_,
min_x,
_,
max_x_inclusive,
_,
min_y,
_,
max_y_inclusive,
_,
min_z,
_,
max_z_inclusive,
)| Block {
min_x,
max_x: max_x_inclusive + 1,
min_y,
max_y: max_y_inclusive + 1,
min_z,
max_z: max_z_inclusive + 1,
},
)(input)
}
|