summaryrefslogtreecommitdiff
path: root/quantum/split_common/matrix.c
blob: d8e078e9bb5692b515ad16fd56b4b53d3823d75f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "util.h"
#include "matrix.h"
#include "debounce.h"
#include "quantum.h"
#include "split_util.h"
#include "config.h"
#include "transactions.h"

#ifndef ERROR_DISCONNECT_COUNT
#    define ERROR_DISCONNECT_COUNT 5
#endif  // ERROR_DISCONNECT_COUNT

#define ROWS_PER_HAND (MATRIX_ROWS / 2)

#ifdef DIRECT_PINS
static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
#elif (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
#    ifdef MATRIX_ROW_PINS
static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
#    endif  // MATRIX_ROW_PINS
#    ifdef MATRIX_COL_PINS
static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#    endif  // MATRIX_COL_PINS
#endif

/* matrix state(1:on, 0:off) */
extern matrix_row_t raw_matrix[MATRIX_ROWS];  // raw values
extern matrix_row_t matrix[MATRIX_ROWS];      // debounced values

// row offsets for each hand
uint8_t thisHand, thatHand;

// user-defined overridable functions
__attribute__((weak)) void matrix_slave_scan_kb(void) { matrix_slave_scan_user(); }
__attribute__((weak)) void matrix_slave_scan_user(void) {}
__attribute__((weak)) void matrix_init_pins(void);
__attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
__attribute__((weak)) void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);

static inline void setPinOutput_writeLow(pin_t pin) {
    ATOMIC_BLOCK_FORCEON {
        setPinOutput(pin);
        writePinLow(pin);
    }
}

static inline void setPinInputHigh_atomic(pin_t pin) {
    ATOMIC_BLOCK_FORCEON { setPinInputHigh(pin); }
}

static inline uint8_t readMatrixPin(pin_t pin) {
    if (pin != NO_PIN) {
        return readPin(pin);
    } else {
        return 1;
    }
}

// matrix code

#ifdef DIRECT_PINS

__attribute__((weak)) void matrix_init_pins(void) {
    for (int row = 0; row < MATRIX_ROWS; row++) {
        for (int col = 0; col < MATRIX_COLS; col++) {
            pin_t pin = direct_pins[row][col];
            if (pin != NO_PIN) {
                setPinInputHigh(pin);
            }
        }
    }
}

__attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
    // Start with a clear matrix row
    matrix_row_t current_row_value = 0;

    for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
        pin_t pin = direct_pins[current_row][col_index];
        if (pin != NO_PIN) {
            current_row_value |= readPin(pin) ? 0 : (MATRIX_ROW_SHIFTER << col_index);
        }
    }

    // Update the matrix
    current_matrix[current_row] = current_row_value;
}

#elif defined(DIODE_DIRECTION)
#    if defined(MATRIX_ROW_PINS) && defined(MATRIX_COL_PINS)
#        if (DIODE_DIRECTION == COL2ROW)

static bool select_row(uint8_t row) {
    pin_t pin = row_pins[row];
    if (pin != NO_PIN) {
        setPinOutput_writeLow(pin);
        return true;
    }
    return false;
}

static void unselect_row(uint8_t row) {
    pin_t pin = row_pins[row];
    if (pin != NO_PIN) {
        setPinInputHigh_atomic(pin);
    }
}

static void unselect_rows(void) {
    for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
        unselect_row(x);
    }
}

__attribute__((weak)) void matrix_init_pins(void) {
    unselect_rows();
    for (uint8_t x = 0; x < MATRIX_COLS; x++) {
        if (col_pins[x] != NO_PIN) {
            setPinInputHigh_atomic(col_pins[x]);
        }
    }
}

__attribute__((weak)) void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
    // Start with a clear matrix row
    matrix_row_t current_row_value = 0;

    if (!select_row(current_row)) {  // Select row
        return;                      // skip NO_PIN row
    }
    matrix_output_select_delay();

    // For each col...
    for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
        uint8_t pin_state = readMatrixPin(col_pins[col_index]);

        // Populate the matrix row with the state of the col pin
        current_row_value |= pin_state ? 0 : (MATRIX_ROW_SHIFTER << col_index);
    }

    // Unselect row
    unselect_row(current_row);
    matrix_output_unselect_delay();  // wait for all Col signals to go HIGH

    // Update the matrix
    current_matrix[current_row] = current_row_value;
}

#        elif (DIODE_DIRECTION == ROW2COL)

static bool select_col(uint8_t col) {
    pin_t pin = col_pins[col];
    if (pin != NO_PIN) {
        setPinOutput_writeLow(pin);
        return true;
    }
    return false;
}

static void unselect_col(uint8_t col) {
    pin_t pin = col_pins[col];
    if (pin != NO_PIN) {
        setPinInputHigh_atomic(pin);
    }
}

static void unselect_cols(void) {
    for (uint8_t x = 0; x < MATRIX_COLS; x++) {
        unselect_col(x);
    }
}

__attribute__((weak)) void matrix_init_pins(void) {
    unselect_cols();
    for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
        if (row_pins[x] != NO_PIN) {
            setPinInputHigh_atomic(row_pins[x]);
        }
    }
}

__attribute__((weak)) void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
    // Select col
    if (!select_col(current_col)) {  // select col
        return;                      // skip NO_PIN col
    }
    matrix_output_select_delay();

    // For each row...
    for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) {
        // Check row pin state
        if (readMatrixPin(row_pins[row_index]) == 0) {
            // Pin LO, set col bit
            current_matrix[row_index] |= (MATRIX_ROW_SHIFTER << current_col);
        } else {
            // Pin HI, clear col bit
            current_matrix[row_index] &= ~(MATRIX_ROW_SHIFTER << current_col);
        }
    }

    // Unselect col
    unselect_col(current_col);
    matrix_output_unselect_delay();  // wait for all Row signals to go HIGH
}

#        else
#            error DIODE_DIRECTION must be one of COL2ROW or ROW2COL!
#        endif
#    endif  // defined(MATRIX_ROW_PINS) && defined(MATRIX_COL_PINS)
#else
#    error DIODE_DIRECTION is not defined!
#endif

void matrix_init(void) {
    split_pre_init();

    // Set pinout for right half if pinout for that half is defined
    if (!isLeftHand) {
#ifdef DIRECT_PINS_RIGHT
        const pin_t direct_pins_right[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS_RIGHT;
        for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
            for (uint8_t j = 0; j < MATRIX_COLS; j++) {
                direct_pins[i][j] = direct_pins_right[i][j];
            }
        }
#endif
#ifdef MATRIX_ROW_PINS_RIGHT
        const pin_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
        for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
            row_pins[i] = row_pins_right[i];
        }
#endif
#ifdef MATRIX_COL_PINS_RIGHT
        const pin_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
        for (uint8_t i = 0; i < MATRIX_COLS; i++) {
            col_pins[i] = col_pins_right[i];
        }
#endif
    }

    thisHand = isLeftHand ? 0 : (ROWS_PER_HAND);
    thatHand = ROWS_PER_HAND - thisHand;

    // initialize key pins
    matrix_init_pins();

    // initialize matrix state: all keys off
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        raw_matrix[i] = 0;
        matrix[i]     = 0;
    }

    debounce_init(ROWS_PER_HAND);

    matrix_init_quantum();

    split_post_init();
}

bool matrix_post_scan(void) {
    bool changed = false;
    if (is_keyboard_master()) {
        static uint8_t error_count;

        matrix_row_t slave_matrix[ROWS_PER_HAND] = {0};
        if (!transport_master(matrix + thisHand, slave_matrix)) {
            error_count++;

            if (error_count > ERROR_DISCONNECT_COUNT) {
                // reset other half if disconnected
                for (int i = 0; i < ROWS_PER_HAND; ++i) {
                    matrix[thatHand + i] = 0;
                    slave_matrix[i]      = 0;
                }

                changed = true;
            }
        } else {
            error_count = 0;

            for (int i = 0; i < ROWS_PER_HAND; ++i) {
                if (matrix[thatHand + i] != slave_matrix[i]) {
                    matrix[thatHand + i] = slave_matrix[i];
                    changed              = true;
                }
            }
        }

        matrix_scan_quantum();
    } else {
        transport_slave(matrix + thatHand, matrix + thisHand);

        matrix_slave_scan_kb();
    }

    return changed;
}

uint8_t matrix_scan(void) {
    matrix_row_t curr_matrix[MATRIX_ROWS] = {0};

#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
    // Set row, read cols
    for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
        matrix_read_cols_on_row(curr_matrix, current_row);
    }
#elif (DIODE_DIRECTION == ROW2COL)
    // Set col, read rows
    for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
        matrix_read_rows_on_col(curr_matrix, current_col);
    }
#endif

    bool local_changed = memcmp(raw_matrix, curr_matrix, sizeof(curr_matrix)) != 0;
    if (local_changed) memcpy(raw_matrix, curr_matrix, sizeof(curr_matrix));

    debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, local_changed);

    bool remote_changed = matrix_post_scan();
    return (uint8_t)(local_changed || remote_changed);
}