1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
/* Copyright 2017 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "keymap.h" // to get keymaps[][][]
#include "tmk_core/common/eeprom.h"
#include "progmem.h" // to read default from flash
#include "quantum.h" // for send_string()
#include "dynamic_keymap.h"
#include "via.h" // for default VIA_EEPROM_ADDR_END
#ifndef DYNAMIC_KEYMAP_LAYER_COUNT
# define DYNAMIC_KEYMAP_LAYER_COUNT 4
#endif
#ifndef DYNAMIC_KEYMAP_MACRO_COUNT
# define DYNAMIC_KEYMAP_MACRO_COUNT 16
#endif
// This is the default EEPROM max address to use for dynamic keymaps.
// The default is the ATmega32u4 EEPROM max address.
// Explicitly override it if the keyboard uses a microcontroller with
// more EEPROM *and* it makes sense to increase it.
#ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR
# define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 1023
#endif
// If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h,
// default it start after VIA_EEPROM_CUSTOM_ADDR+VIA_EEPROM_CUSTOM_SIZE
#ifndef DYNAMIC_KEYMAP_EEPROM_ADDR
# ifdef VIA_EEPROM_CUSTOM_CONFIG_ADDR
# define DYNAMIC_KEYMAP_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR + VIA_EEPROM_CUSTOM_CONFIG_SIZE)
# else
# error DYNAMIC_KEYMAP_EEPROM_ADDR not defined
# endif
#endif
// Dynamic macro starts after dynamic keymaps
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
# define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
#endif
// Sanity check that dynamic keymaps fit in available EEPROM
// If there's not 100 bytes available for macros, then something is wrong.
// The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it,
// or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has
// more than the default.
#if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR < 100
# error Dynamic keymaps are configured to use more EEPROM than is available.
#endif
// Dynamic macros are stored after the keymaps and use what is available
// up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR.
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE
# define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1)
#endif
uint8_t dynamic_keymap_get_layer_count(void) { return DYNAMIC_KEYMAP_LAYER_COUNT; }
void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) {
// TODO: optimize this with some left shifts
return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2);
}
uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) {
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
uint16_t keycode = eeprom_read_byte(address) << 8;
keycode |= eeprom_read_byte(address + 1);
return keycode;
}
void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) {
void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
// Big endian, so we can read/write EEPROM directly from host if we want
eeprom_update_byte(address, (uint8_t)(keycode >> 8));
eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
}
void dynamic_keymap_reset(void) {
// Reset the keymaps in EEPROM to what is in flash.
// All keyboards using dynamic keymaps should define a layout
// for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT.
for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) {
for (int row = 0; row < MATRIX_ROWS; row++) {
for (int column = 0; column < MATRIX_COLS; column++) {
dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column]));
}
}
}
}
void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
uint8_t *target = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < dynamic_keymap_eeprom_size) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
uint8_t *source = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < dynamic_keymap_eeprom_size) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
// This overrides the one in quantum/keymap_common.c
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) {
if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
return dynamic_keymap_get_keycode(layer, key.row, key.col);
} else {
return KC_NO;
}
}
uint8_t dynamic_keymap_macro_get_count(void) { return DYNAMIC_KEYMAP_MACRO_COUNT; }
uint16_t dynamic_keymap_macro_get_buffer_size(void) { return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE; }
void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
uint8_t *target = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
*target = eeprom_read_byte(source);
} else {
*target = 0x00;
}
source++;
target++;
}
}
void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
uint8_t *source = data;
for (uint16_t i = 0; i < size; i++) {
if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
eeprom_update_byte(target, *source);
}
source++;
target++;
}
}
void dynamic_keymap_macro_reset(void) {
void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while (p != end) {
eeprom_update_byte(p, 0);
++p;
}
}
void dynamic_keymap_macro_send(uint8_t id) {
if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) {
return;
}
// Check the last byte of the buffer.
// If it's not zero, then we are in the middle
// of buffer writing, possibly an aborted buffer
// write. So do nothing.
void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1);
if (eeprom_read_byte(p) != 0) {
return;
}
// Skip N null characters
// p will then point to the Nth macro
p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
while (id > 0) {
// If we are past the end of the buffer, then the buffer
// contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT
// nulls in the buffer.
if (p == end) {
return;
}
if (eeprom_read_byte(p) == 0) {
--id;
}
++p;
}
// Send the macro string one or three chars at a time
// by making temporary 1 or 3 char strings
char data[4] = {0, 0, 0, 0};
// We already checked there was a null at the end of
// the buffer, so this cannot go past the end
while (1) {
data[0] = eeprom_read_byte(p++);
data[1] = 0;
// Stop at the null terminator of this macro string
if (data[0] == 0) {
break;
}
// If the char is magic (tap, down, up),
// add the next char (key to use) and send a 3 char string.
if (data[0] == SS_TAP_CODE || data[0] == SS_DOWN_CODE || data[0] == SS_UP_CODE) {
data[1] = data[0];
data[0] = SS_QMK_PREFIX;
data[2] = eeprom_read_byte(p++);
if (data[2] == 0) {
break;
}
}
send_string(data);
}
}
|