summaryrefslogtreecommitdiff
path: root/keyboards/moonlander/matrix.c
blob: e5b9b81a2e5e672076a68fcce8ddabf8852231e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
Copyright 2018 Jack Humbert <jack.humb@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "hal.h"
#include "timer.h"
#include "wait.h"
#include "printf.h"
#include "matrix.h"
#include "action.h"
#include "keycode.h"
#include <string.h>
#include "moonlander.h"
#include "i2c_master.h"
#include "debounce.h"

/*
#define MATRIX_ROW_PINS { B10, B11, B12, B13, B14, B15 } outputs
#define MATRIX_COL_PINS { A0, A1, A2, A3, A6, A7, B0 }   inputs
 */
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t matrix_debouncing_right[MATRIX_COLS];
static bool         debouncing            = false;
static uint16_t     debouncing_time       = 0;
static bool         debouncing_right      = false;
static uint16_t     debouncing_time_right = 0;

#define ROWS_PER_HAND (MATRIX_ROWS / 2)

extern bool mcp23018_leds[3];
extern bool is_launching;

__attribute__((weak)) void matrix_init_user(void) {}

__attribute__((weak)) void matrix_scan_user(void) {}

__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }

__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }

bool           mcp23018_initd = false;
static uint8_t mcp23018_reset_loop;

uint8_t mcp23018_tx[3];
uint8_t mcp23018_rx[1];

void mcp23018_init(void) {
    i2c_init();

    // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 }       outputs
    // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs

    mcp23018_tx[0] = 0x00;        // IODIRA
    mcp23018_tx[1] = 0b00000000;  // A is output
    mcp23018_tx[2] = 0b00111111;  // B is inputs

    if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, I2C_TIMEOUT)) {
        printf("error hori\n");
    } else {
        mcp23018_tx[0] = 0x0C;        // GPPUA
        mcp23018_tx[1] = 0b10000000;  // A is not pulled-up
        mcp23018_tx[2] = 0b11111111;  // B is pulled-up

        if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, I2C_TIMEOUT)) {
            printf("error hori\n");
        } else {
            mcp23018_initd = is_launching = true;
        }
    }
}

void matrix_init(void) {
    printf("matrix init\n");
    // debug_matrix = true;

    // outputs
    setPinOutput(B10);
    setPinOutput(B11);
    setPinOutput(B12);
    setPinOutput(B13);
    setPinOutput(B14);
    setPinOutput(B15);

    // inputs
    setPinInputLow(A0);
    setPinInputLow(A1);
    setPinInputLow(A2);
    setPinInputLow(A3);
    setPinInputLow(A6);
    setPinInputLow(A7);
    setPinInputLow(B0);

    memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t));
    memset(matrix_debouncing, 0, MATRIX_ROWS * sizeof(matrix_row_t));
    memset(matrix_debouncing_right, 0, MATRIX_COLS * sizeof(matrix_row_t));

    mcp23018_init();

    matrix_init_quantum();
}

uint8_t matrix_scan(void) {
    bool changed = false;

    matrix_row_t data = 0;
    // actual matrix
    for (uint8_t row = 0; row < ROWS_PER_HAND; row++) {
        // strobe row
        switch (row) {
            case 0: writePinHigh(B10); break;
            case 1: writePinHigh(B11); break;
            case 2: writePinHigh(B12); break;
            case 3: writePinHigh(B13); break;
            case 4: writePinHigh(B14); break;
            case 5: writePinHigh(B15); break;
        }

        // need wait to settle pin state
        wait_us(20);

        // read col data
        data = (
            (readPin(A0) << 0 ) |
            (readPin(A1) << 1 ) |
            (readPin(A2) << 2 ) |
            (readPin(A3) << 3 ) |
            (readPin(A6) << 4 ) |
            (readPin(A7) << 5 ) |
            (readPin(B0) << 6 )
        );

        // unstrobe  row
        switch (row) {
            case 0: writePinLow(B10); break;
            case 1: writePinLow(B11); break;
            case 2: writePinLow(B12); break;
            case 3: writePinLow(B13); break;
            case 4: writePinLow(B14); break;
            case 5: writePinLow(B15); break;
        }

        if (matrix_debouncing[row] != data) {
            matrix_debouncing[row] = data;
            debouncing             = true;
            debouncing_time        = timer_read();
            changed                = true;
        }
    }

    for (uint8_t row = 0; row <= ROWS_PER_HAND; row++) {
        // right side

        if (!mcp23018_initd) {
            if (++mcp23018_reset_loop == 0) {
                // if (++mcp23018_reset_loop >= 1300) {
                // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
                // this will be approx bit more frequent than once per second
                print("trying to reset mcp23018\n");
                mcp23018_init();
                if (!mcp23018_initd) {
                    print("left side not responding\n");
                } else {
                    print("left side attached\n");
#ifdef RGB_MATRIX_ENABLE
                    rgb_matrix_init();
#endif
                }
            }
        }

        // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 }       outputs
        // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs

        // select row

        mcp23018_tx[0] = 0x12;                                                                   // GPIOA
        mcp23018_tx[1] = (0b01111111 & ~(1 << (row))) | ((uint8_t)!mcp23018_leds[2] << 7);       // activate row
        mcp23018_tx[2] = ((uint8_t)!mcp23018_leds[1] << 6) | ((uint8_t)!mcp23018_leds[0] << 7);  // activate row

        if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, I2C_TIMEOUT)) {
            printf("error hori\n");
            mcp23018_initd = false;
        }

        // read col

        mcp23018_tx[0] = 0x13;  // GPIOB
        if (MSG_OK != i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx[0], &mcp23018_rx[0], 1, I2C_TIMEOUT)) {
            printf("error vert\n");
            mcp23018_initd = false;
        }

        data = ~(mcp23018_rx[0] & 0b00111111);
        // data = 0x01;

        if (matrix_debouncing_right[row] != data) {
            matrix_debouncing_right[row] = data;
            debouncing_right             = true;
            debouncing_time_right        = timer_read();
            changed                      = true;
        }
    }

    if (debouncing && timer_elapsed(debouncing_time) > DEBOUNCE) {
        for (int row = 0; row < ROWS_PER_HAND; row++) {
            matrix[row] = matrix_debouncing[row];
        }
        debouncing = false;
    }

    if (debouncing_right && timer_elapsed(debouncing_time_right) > DEBOUNCE && mcp23018_initd) {
        for (int row = 0; row < ROWS_PER_HAND; row++) {
            matrix[11 - row] = 0;
            for (int col = 0; col < MATRIX_COLS; col++) {
                matrix[11 - row] |= ((matrix_debouncing_right[6 - col] & (1 << row) ? 1 : 0) << col);
            }
        }
        debouncing_right = false;
    }

    matrix_scan_quantum();

    return (uint8_t)changed;
}

bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & (1 << col)); }

matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; }

void matrix_print(void) {
    printf("\nr/c 01234567\n");
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        printf("%X0: ", row);
        matrix_row_t data = matrix_get_row(row);
        for (int col = 0; col < MATRIX_COLS; col++) {
            if (data & (1 << col))
                printf("1");
            else
                printf("0");
        }
        printf("\n");
    }
}