summaryrefslogtreecommitdiff
path: root/tmk_core/common/chibios/eeprom_teensy.c
diff options
context:
space:
mode:
Diffstat (limited to 'tmk_core/common/chibios/eeprom_teensy.c')
-rw-r--r--tmk_core/common/chibios/eeprom_teensy.c795
1 files changed, 0 insertions, 795 deletions
diff --git a/tmk_core/common/chibios/eeprom_teensy.c b/tmk_core/common/chibios/eeprom_teensy.c
deleted file mode 100644
index 97da6f9e14..0000000000
--- a/tmk_core/common/chibios/eeprom_teensy.c
+++ /dev/null
@@ -1,795 +0,0 @@
-#include <ch.h>
-#include <hal.h>
-
-#include "eeconfig.h"
-
-/*************************************/
-/* Hardware backend */
-/* */
-/* Code from PJRC/Teensyduino */
-/*************************************/
-
-/* Teensyduino Core Library
- * http://www.pjrc.com/teensy/
- * Copyright (c) 2013 PJRC.COM, LLC.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * 1. The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * 2. If the Software is incorporated into a build system that allows
- * selection among a list of target devices, then similar target
- * devices manufactured by PJRC.COM must be included in the list of
- * target devices and selectable in the same manner.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#define SMC_PMSTAT_RUN ((uint8_t)0x01)
-#define SMC_PMSTAT_HSRUN ((uint8_t)0x80)
-
-#define F_CPU KINETIS_SYSCLK_FREQUENCY
-
-static inline int kinetis_hsrun_disable(void) {
-#if defined(MK66F18)
- if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) {
-// First, reduce the CPU clock speed, but do not change
-// the peripheral speed (F_BUS). Serial1 & Serial2 baud
-// rates will be impacted, but most other peripherals
-// will continue functioning at the same speed.
-# if F_CPU == 256000000 && F_BUS == 64000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // TODO: TEST
-# elif F_CPU == 256000000 && F_BUS == 128000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // TODO: TEST
-# elif F_CPU == 240000000 && F_BUS == 60000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
-# elif F_CPU == 240000000 && F_BUS == 80000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
-# elif F_CPU == 240000000 && F_BUS == 120000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
-# elif F_CPU == 216000000 && F_BUS == 54000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
-# elif F_CPU == 216000000 && F_BUS == 72000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
-# elif F_CPU == 216000000 && F_BUS == 108000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
-# elif F_CPU == 192000000 && F_BUS == 48000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
-# elif F_CPU == 192000000 && F_BUS == 64000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
-# elif F_CPU == 192000000 && F_BUS == 96000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
-# elif F_CPU == 180000000 && F_BUS == 60000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
-# elif F_CPU == 180000000 && F_BUS == 90000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
-# elif F_CPU == 168000000 && F_BUS == 56000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
-# elif F_CPU == 144000000 && F_BUS == 48000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
-# elif F_CPU == 144000000 && F_BUS == 72000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok
-# elif F_CPU == 120000000 && F_BUS == 60000000
- SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
-# if defined(MK66F18)
- SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
-# endif
- SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
-# else
- return 0;
-# endif
- // Then turn off HSRUN mode
- SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0);
- while (SMC->PMSTAT == SMC_PMSTAT_HSRUN)
- ; // wait
- return 1;
- }
-#endif
- return 0;
-}
-
-static inline int kinetis_hsrun_enable(void) {
-#if defined(MK66F18)
- if (SMC->PMSTAT == SMC_PMSTAT_RUN) {
- // Turn HSRUN mode on
- SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3);
- while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) {
- ;
- } // wait
-// Then configure clock for full speed
-# if F_CPU == 256000000 && F_BUS == 64000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
-# elif F_CPU == 256000000 && F_BUS == 128000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
-# elif F_CPU == 240000000 && F_BUS == 60000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
-# elif F_CPU == 240000000 && F_BUS == 80000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
-# elif F_CPU == 240000000 && F_BUS == 120000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
-# elif F_CPU == 216000000 && F_BUS == 54000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
-# elif F_CPU == 216000000 && F_BUS == 72000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
-# elif F_CPU == 216000000 && F_BUS == 108000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
-# elif F_CPU == 192000000 && F_BUS == 48000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6);
-# elif F_CPU == 192000000 && F_BUS == 64000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
-# elif F_CPU == 192000000 && F_BUS == 96000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
-# elif F_CPU == 180000000 && F_BUS == 60000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
-# elif F_CPU == 180000000 && F_BUS == 90000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
-# elif F_CPU == 168000000 && F_BUS == 56000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5);
-# elif F_CPU == 144000000 && F_BUS == 48000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4);
-# elif F_CPU == 144000000 && F_BUS == 72000000
- SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4);
-# elif F_CPU == 120000000 && F_BUS == 60000000
- SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
-# if defined(MK66F18)
- SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
-# endif
- SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
-# else
- return 0;
-# endif
- return 1;
- }
-#endif
- return 0;
-}
-
-#if defined(K20x) || defined(MK66F18) /* chip selection */
-/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
-
-// The EEPROM is really RAM with a hardware-based backup system to
-// flash memory. Selecting a smaller size EEPROM allows more wear
-// leveling, for higher write endurance. If you edit this file,
-// set this to the smallest size your application can use. Also,
-// due to Freescale's implementation, writing 16 or 32 bit words
-// (aligned to 2 or 4 byte boundaries) has twice the endurance
-// compared to writing 8 bit bytes.
-//
-# ifndef EEPROM_SIZE
-# define EEPROM_SIZE 32
-# endif
-
-/*
- ^^^ Here be dragons:
- NXP AppNote AN4282 section 3.1 states that partitioning must only be done once.
- Once EEPROM partitioning is done, the size is locked to this initial configuration.
- Attempts to modify the EEPROM_SIZE setting may brick your board.
-*/
-
-// Writing unaligned 16 or 32 bit data is handled automatically when
-// this is defined, but at a cost of extra code size. Without this,
-// any unaligned write will cause a hard fault exception! If you're
-// absolutely sure all 16 and 32 bit writes will be aligned, you can
-// remove the extra unnecessary code.
-//
-# define HANDLE_UNALIGNED_WRITES
-
-# if defined(K20x)
-# define EEPROM_MAX 2048
-# define EEPARTITION 0x03 // all 32K dataflash for EEPROM, none for Data
-# define EEESPLIT 0x30 // must be 0x30 on these chips
-# elif defined(MK66F18)
-# define EEPROM_MAX 4096
-# define EEPARTITION 0x05 // 128K dataflash for EEPROM, 128K for Data
-# define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal
-# endif
-
-// Minimum EEPROM Endurance
-// ------------------------
-# if (EEPROM_SIZE == 4096)
-# define EEESIZE 0x02
-# elif (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
-# define EEESIZE 0x03
-# elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
-# define EEESIZE 0x04
-# elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
-# define EEESIZE 0x05
-# elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
-# define EEESIZE 0x06
-# elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
-# define EEESIZE 0x07
-# elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
-# define EEESIZE 0x08
-# elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
-# define EEESIZE 0x09
-# endif
-
-/** \brief eeprom initialization
- *
- * FIXME: needs doc
- */
-void eeprom_initialize(void) {
- uint32_t count = 0;
- uint16_t do_flash_cmd[] = {0xf06f, 0x037f, 0x7003, 0x7803, 0xf013, 0x0f80, 0xd0fb, 0x4770};
- uint8_t status;
-
- if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
-
- // FlexRAM is configured as traditional RAM
- // We need to reconfigure for EEPROM usage
- kinetis_hsrun_disable();
- FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
- FTFL->FCCOB3 = 0;
- FTFL->FCCOB4 = EEESPLIT | EEESIZE;
- FTFL->FCCOB5 = EEPARTITION;
- __disable_irq();
- // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple...
- (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
- __enable_irq();
- kinetis_hsrun_enable();
- status = FTFL->FSTAT;
- if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) {
- FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL));
- return; // error
- }
- }
- // wait for eeprom to become ready (is this really necessary?)
- while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
- if (++count > 200000) break;
- }
-}
-
-# define FlexRAM ((volatile uint8_t *)0x14000000)
-
-/** \brief eeprom read byte
- *
- * FIXME: needs doc
- */
-uint8_t eeprom_read_byte(const uint8_t *addr) {
- uint32_t offset = (uint32_t)addr;
- if (offset >= EEPROM_SIZE) return 0;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
- return FlexRAM[offset];
-}
-
-/** \brief eeprom read word
- *
- * FIXME: needs doc
- */
-uint16_t eeprom_read_word(const uint16_t *addr) {
- uint32_t offset = (uint32_t)addr;
- if (offset >= EEPROM_SIZE - 1) return 0;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
- return *(uint16_t *)(&FlexRAM[offset]);
-}
-
-/** \brief eeprom read dword
- *
- * FIXME: needs doc
- */
-uint32_t eeprom_read_dword(const uint32_t *addr) {
- uint32_t offset = (uint32_t)addr;
- if (offset >= EEPROM_SIZE - 3) return 0;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
- return *(uint32_t *)(&FlexRAM[offset]);
-}
-
-/** \brief eeprom read block
- *
- * FIXME: needs doc
- */
-void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
- uint32_t offset = (uint32_t)addr;
- uint8_t *dest = (uint8_t *)buf;
- uint32_t end = offset + len;
-
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
- if (end > EEPROM_SIZE) end = EEPROM_SIZE;
- while (offset < end) {
- *dest++ = FlexRAM[offset++];
- }
-}
-
-/** \brief eeprom is ready
- *
- * FIXME: needs doc
- */
-int eeprom_is_ready(void) { return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0; }
-
-/** \brief flexram wait
- *
- * FIXME: needs doc
- */
-static void flexram_wait(void) {
- while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
- // TODO: timeout
- }
-}
-
-/** \brief eeprom_write_byte
- *
- * FIXME: needs doc
- */
-void eeprom_write_byte(uint8_t *addr, uint8_t value) {
- uint32_t offset = (uint32_t)addr;
-
- if (offset >= EEPROM_SIZE) return;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
- if (FlexRAM[offset] != value) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- FlexRAM[offset] = value;
- flexram_wait();
- kinetis_hsrun_enable();
- }
-}
-
-/** \brief eeprom write word
- *
- * FIXME: needs doc
- */
-void eeprom_write_word(uint16_t *addr, uint16_t value) {
- uint32_t offset = (uint32_t)addr;
-
- if (offset >= EEPROM_SIZE - 1) return;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
-# ifdef HANDLE_UNALIGNED_WRITES
- if ((offset & 1) == 0) {
-# endif
- if (*(uint16_t *)(&FlexRAM[offset]) != value) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint16_t *)(&FlexRAM[offset]) = value;
- flexram_wait();
- kinetis_hsrun_enable();
- }
-# ifdef HANDLE_UNALIGNED_WRITES
- } else {
- if (FlexRAM[offset] != value) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- FlexRAM[offset] = value;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- if (FlexRAM[offset + 1] != (value >> 8)) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- FlexRAM[offset + 1] = value >> 8;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- }
-# endif
-}
-
-/** \brief eeprom write dword
- *
- * FIXME: needs doc
- */
-void eeprom_write_dword(uint32_t *addr, uint32_t value) {
- uint32_t offset = (uint32_t)addr;
-
- if (offset >= EEPROM_SIZE - 3) return;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
-# ifdef HANDLE_UNALIGNED_WRITES
- switch (offset & 3) {
- case 0:
-# endif
- if (*(uint32_t *)(&FlexRAM[offset]) != value) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint32_t *)(&FlexRAM[offset]) = value;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- return;
-# ifdef HANDLE_UNALIGNED_WRITES
- case 2:
- if (*(uint16_t *)(&FlexRAM[offset]) != value) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint16_t *)(&FlexRAM[offset]) = value;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- return;
- default:
- if (FlexRAM[offset] != value) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- FlexRAM[offset] = value;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- if (FlexRAM[offset + 3] != (value >> 24)) {
- kinetis_hsrun_disable();
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- FlexRAM[offset + 3] = value >> 24;
- flexram_wait();
- kinetis_hsrun_enable();
- }
- }
-# endif
-}
-
-/** \brief eeprom write block
- *
- * FIXME: needs doc
- */
-void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
- uint32_t offset = (uint32_t)addr;
- const uint8_t *src = (const uint8_t *)buf;
-
- if (offset >= EEPROM_SIZE) return;
- if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
- if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
- if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
- kinetis_hsrun_disable();
- while (len > 0) {
- uint32_t lsb = offset & 3;
- if (lsb == 0 && len >= 4) {
- // write aligned 32 bits
- uint32_t val32;
- val32 = *src++;
- val32 |= (*src++ << 8);
- val32 |= (*src++ << 16);
- val32 |= (*src++ << 24);
- if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint32_t *)(&FlexRAM[offset]) = val32;
- flexram_wait();
- }
- offset += 4;
- len -= 4;
- } else if ((lsb == 0 || lsb == 2) && len >= 2) {
- // write aligned 16 bits
- uint16_t val16;
- val16 = *src++;
- val16 |= (*src++ << 8);
- if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- *(uint16_t *)(&FlexRAM[offset]) = val16;
- flexram_wait();
- }
- offset += 2;
- len -= 2;
- } else {
- // write 8 bits
- uint8_t val8 = *src++;
- if (FlexRAM[offset] != val8) {
- uint8_t stat = FTFL->FSTAT & 0x70;
- if (stat) FTFL->FSTAT = stat;
- FlexRAM[offset] = val8;
- flexram_wait();
- }
- offset++;
- len--;
- }
- }
- kinetis_hsrun_enable();
-}
-
-/*
-void do_flash_cmd(volatile uint8_t *fstat)
-{
- *fstat = 0x80;
- while ((*fstat & 0x80) == 0) ; // wait
-}
-00000000 <do_flash_cmd>:
- 0: f06f 037f mvn.w r3, #127 ; 0x7f
- 4: 7003 strb r3, [r0, #0]
- 6: 7803 ldrb r3, [r0, #0]
- 8: f013 0f80 tst.w r3, #128 ; 0x80
- c: d0fb beq.n 6 <do_flash_cmd+0x6>
- e: 4770 bx lr
-*/
-
-#elif defined(KL2x) /* chip selection */
-/* Teensy LC (emulated) */
-
-# define SYMVAL(sym) (uint32_t)(((uint8_t *)&(sym)) - ((uint8_t *)0))
-
-extern uint32_t __eeprom_workarea_start__;
-extern uint32_t __eeprom_workarea_end__;
-
-# define EEPROM_SIZE 128
-
-static uint32_t flashend = 0;
-
-void eeprom_initialize(void) {
- const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
-
- do {
- if (*p++ == 0xFFFF) {
- flashend = (uint32_t)(p - 2);
- return;
- }
- } while (p < (uint16_t *)SYMVAL(__eeprom_workarea_end__));
- flashend = (uint32_t)(p - 1);
-}
-
-uint8_t eeprom_read_byte(const uint8_t *addr) {
- uint32_t offset = (uint32_t)addr;
- const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
- const uint16_t *end = (const uint16_t *)((uint32_t)flashend);
- uint16_t val;
- uint8_t data = 0xFF;
-
- if (!end) {
- eeprom_initialize();
- end = (const uint16_t *)((uint32_t)flashend);
- }
- if (offset < EEPROM_SIZE) {
- while (p <= end) {
- val = *p++;
- if ((val & 255) == offset) data = val >> 8;
- }
- }
- return data;
-}
-
-static void flash_write(const uint16_t *code, uint32_t addr, uint32_t data) {
- // with great power comes great responsibility....
- uint32_t stat;
- *(uint32_t *)&(FTFA->FCCOB3) = 0x06000000 | (addr & 0x00FFFFFC);
- *(uint32_t *)&(FTFA->FCCOB7) = data;
- __disable_irq();
- (*((void (*)(volatile uint8_t *))((uint32_t)code | 1)))(&(FTFA->FSTAT));
- __enable_irq();
- stat = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR | FTFA_FSTAT_ACCERR | FTFA_FSTAT_FPVIOL);
- if (stat) {
- FTFA->FSTAT = stat;
- }
- MCM->PLACR |= MCM_PLACR_CFCC;
-}
-
-void eeprom_write_byte(uint8_t *addr, uint8_t data) {
- uint32_t offset = (uint32_t)addr;
- const uint16_t *p, *end = (const uint16_t *)((uint32_t)flashend);
- uint32_t i, val, flashaddr;
- uint16_t do_flash_cmd[] = {0x2380, 0x7003, 0x7803, 0xb25b, 0x2b00, 0xdafb, 0x4770};
- uint8_t buf[EEPROM_SIZE];
-
- if (offset >= EEPROM_SIZE) return;
- if (!end) {
- eeprom_initialize();
- end = (const uint16_t *)((uint32_t)flashend);
- }
- if (++end < (uint16_t *)SYMVAL(__eeprom_workarea_end__)) {
- val = (data << 8) | offset;
- flashaddr = (uint32_t)end;
- flashend = flashaddr;
- if ((flashaddr & 2) == 0) {
- val |= 0xFFFF0000;
- } else {
- val <<= 16;
- val |= 0x0000FFFF;
- }
- flash_write(do_flash_cmd, flashaddr, val);
- } else {
- for (i = 0; i < EEPROM_SIZE; i++) {
- buf[i] = 0xFF;
- }
- val = 0;
- for (p = (uint16_t *)SYMVAL(__eeprom_workarea_start__); p < (uint16_t *)SYMVAL(__eeprom_workarea_end__); p++) {
- val = *p;
- if ((val & 255) < EEPROM_SIZE) {
- buf[val & 255] = val >> 8;
- }
- }
- buf[offset] = data;
- for (flashaddr = (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__); flashaddr < (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_end__); flashaddr += 1024) {
- *(uint32_t *)&(FTFA->FCCOB3) = 0x09000000 | flashaddr;
- __disable_irq();
- (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFA->FSTAT));
- __enable_irq();
- val = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR | FTFA_FSTAT_ACCERR | FTFA_FSTAT_FPVIOL);
- ;
- if (val) FTFA->FSTAT = val;
- MCM->PLACR |= MCM_PLACR_CFCC;
- }
- flashaddr = (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__);
- for (i = 0; i < EEPROM_SIZE; i++) {
- if (buf[i] == 0xFF) continue;
- if ((flashaddr & 2) == 0) {
- val = (buf[i] << 8) | i;
- } else {
- val = val | (buf[i] << 24) | (i << 16);
- flash_write(do_flash_cmd, flashaddr, val);
- }
- flashaddr += 2;
- }
- flashend = flashaddr;
- if ((flashaddr & 2)) {
- val |= 0xFFFF0000;
- flash_write(do_flash_cmd, flashaddr, val);
- }
- }
-}
-
-/*
-void do_flash_cmd(volatile uint8_t *fstat)
-{
- *fstat = 0x80;
- while ((*fstat & 0x80) == 0) ; // wait
-}
-00000000 <do_flash_cmd>:
- 0: 2380 movs r3, #128 ; 0x80
- 2: 7003 strb r3, [r0, #0]
- 4: 7803 ldrb r3, [r0, #0]
- 6: b25b sxtb r3, r3
- 8: 2b00 cmp r3, #0
- a: dafb bge.n 4 <do_flash_cmd+0x4>
- c: 4770 bx lr
-*/
-
-uint16_t eeprom_read_word(const uint16_t *addr) {
- const uint8_t *p = (const uint8_t *)addr;
- return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8);
-}
-
-uint32_t eeprom_read_dword(const uint32_t *addr) {
- const uint8_t *p = (const uint8_t *)addr;
- return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8) | (eeprom_read_byte(p + 2) << 16) | (eeprom_read_byte(p + 3) << 24);
-}
-
-void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
- const uint8_t *p = (const uint8_t *)addr;
- uint8_t * dest = (uint8_t *)buf;
- while (len--) {
- *dest++ = eeprom_read_byte(p++);
- }
-}
-
-int eeprom_is_ready(void) { return 1; }
-
-void eeprom_write_word(uint16_t *addr, uint16_t value) {
- uint8_t *p = (uint8_t *)addr;
- eeprom_write_byte(p++, value);
- eeprom_write_byte(p, value >> 8);
-}
-
-void eeprom_write_dword(uint32_t *addr, uint32_t value) {
- uint8_t *p = (uint8_t *)addr;
- eeprom_write_byte(p++, value);
- eeprom_write_byte(p++, value >> 8);
- eeprom_write_byte(p++, value >> 16);
- eeprom_write_byte(p, value >> 24);
-}
-
-void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
- uint8_t * p = (uint8_t *)addr;
- const uint8_t *src = (const uint8_t *)buf;
- while (len--) {
- eeprom_write_byte(p++, *src++);
- }
-}
-
-#else
-// No EEPROM supported, so emulate it
-
-# ifndef EEPROM_SIZE
-# include "eeconfig.h"
-# define EEPROM_SIZE (((EECONFIG_SIZE + 3) / 4) * 4) // based off eeconfig's current usage, aligned to 4-byte sizes, to deal with LTO
-# endif
-__attribute__((aligned(4))) static uint8_t buffer[EEPROM_SIZE];
-
-uint8_t eeprom_read_byte(const uint8_t *addr) {
- uint32_t offset = (uint32_t)addr;
- return buffer[offset];
-}
-
-void eeprom_write_byte(uint8_t *addr, uint8_t value) {
- uint32_t offset = (uint32_t)addr;
- buffer[offset] = value;
-}
-
-uint16_t eeprom_read_word(const uint16_t *addr) {
- const uint8_t *p = (const uint8_t *)addr;
- return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8);
-}
-
-uint32_t eeprom_read_dword(const uint32_t *addr) {
- const uint8_t *p = (const uint8_t *)addr;
- return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8) | (eeprom_read_byte(p + 2) << 16) | (eeprom_read_byte(p + 3) << 24);
-}
-
-void eeprom_read_block(void *buf, const void *addr, size_t len) {
- const uint8_t *p = (const uint8_t *)addr;
- uint8_t * dest = (uint8_t *)buf;
- while (len--) {
- *dest++ = eeprom_read_byte(p++);
- }
-}
-
-void eeprom_write_word(uint16_t *addr, uint16_t value) {
- uint8_t *p = (uint8_t *)addr;
- eeprom_write_byte(p++, value);
- eeprom_write_byte(p, value >> 8);
-}
-
-void eeprom_write_dword(uint32_t *addr, uint32_t value) {
- uint8_t *p = (uint8_t *)addr;
- eeprom_write_byte(p++, value);
- eeprom_write_byte(p++, value >> 8);
- eeprom_write_byte(p++, value >> 16);
- eeprom_write_byte(p, value >> 24);
-}
-
-void eeprom_write_block(const void *buf, void *addr, size_t len) {
- uint8_t * p = (uint8_t *)addr;
- const uint8_t *src = (const uint8_t *)buf;
- while (len--) {
- eeprom_write_byte(p++, *src++);
- }
-}
-
-#endif /* chip selection */
-// The update functions just calls write for now, but could probably be optimized
-
-void eeprom_update_byte(uint8_t *addr, uint8_t value) { eeprom_write_byte(addr, value); }
-
-void eeprom_update_word(uint16_t *addr, uint16_t value) {
- uint8_t *p = (uint8_t *)addr;
- eeprom_write_byte(p++, value);
- eeprom_write_byte(p, value >> 8);
-}
-
-void eeprom_update_dword(uint32_t *addr, uint32_t value) {
- uint8_t *p = (uint8_t *)addr;
- eeprom_write_byte(p++, value);
- eeprom_write_byte(p++, value >> 8);
- eeprom_write_byte(p++, value >> 16);
- eeprom_write_byte(p, value >> 24);
-}
-
-void eeprom_update_block(const void *buf, void *addr, size_t len) {
- uint8_t * p = (uint8_t *)addr;
- const uint8_t *src = (const uint8_t *)buf;
- while (len--) {
- eeprom_write_byte(p++, *src++);
- }
-}