summaryrefslogtreecommitdiff
path: root/quantum/template
diff options
context:
space:
mode:
Diffstat (limited to 'quantum/template')
-rw-r--r--quantum/template/Makefile6
-rw-r--r--quantum/template/README.md164
-rw-r--r--quantum/template/config.h8
-rw-r--r--quantum/template/keymaps/default.c30
-rw-r--r--quantum/template/keymaps/keymap_default.c66
-rw-r--r--quantum/template/template.h12
6 files changed, 45 insertions, 241 deletions
diff --git a/quantum/template/Makefile b/quantum/template/Makefile
index 99c97a62cf..2efa691380 100644
--- a/quantum/template/Makefile
+++ b/quantum/template/Makefile
@@ -53,9 +53,9 @@ TARGET_DIR = .
SRC = %KEYBOARD%.c
ifdef KEYMAP
- SRC := keymaps/keymap_$(KEYMAP).c $(SRC)
+ SRC := keymaps/$(KEYMAP).c $(SRC)
else
- SRC := keymaps/keymap_default.c $(SRC)
+ SRC := keymaps/default.c $(SRC)
endif
CONFIG_H = config.h
@@ -107,7 +107,7 @@ OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
-OPT_DEFS += -DBOOTLOADER_SIZE=4096
+OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
diff --git a/quantum/template/README.md b/quantum/template/README.md
index ecea7dd698..dc163a2f4b 100644
--- a/quantum/template/README.md
+++ b/quantum/template/README.md
@@ -3,167 +3,11 @@
## Quantum MK Firmware
-You have access to a bunch of goodies! Check out the Makefile to enable/disable some of the features. Uncomment the `#` to enable them. Setting them to `no` does nothing and will only confuse future you.
-
- BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality
- MIDI_ENABLE = yes # MIDI controls
- # UNICODE_ENABLE = yes # Unicode support - this is commented out, just as an example. You have to use #, not //
- BLUETOOTH_ENABLE = yes # Enable Bluetooth with the Adafruit EZ-Key HID
-
-## Quick aliases to common actions
-
-Your keymap can include shortcuts to common operations (called "function actions" in tmk).
-
-### Switching and toggling layers
-
-`MO(layer)` - momentary switch to *layer*. As soon as you let go of the key, the layer is deactivated and you pop back out to the previous layer. When you apply this to a key, that same key must be set as `KC_TRNS` on the destination layer. Otherwise, you won't make it back to the original layer when you release the key (and you'll get a keycode sent). You can only switch to layers *above* your current layer. If you're on layer 0 and you use `MO(1)`, that will switch to layer 1 just fine. But if you include `MO(3)` on layer 5, that won't do anything for you -- because layer 3 is lower than layer 5 on the stack.
-
-`LT(layer, kc)` - momentary switch to *layer* when held, and *kc* when tapped. Like `MO()`, this only works upwards in the layer stack (`layer` must be higher than the current layer).
-
-`TG(layer)` - toggles a layer on or off. As with `MO()`, you should set this key as `KC_TRNS` in the destination layer so that tapping it again actually toggles back to the original layer. Only works upwards in the layer stack.
-
-### Fun with modifier keys
-
-* `LSFT(kc)` - applies left Shift to *kc* (keycode) - `S(kc)` is an alias
-* `RSFT(kc)` - applies right Shift to *kc*
-* `LCTL(kc)` - applies left Control to *kc*
-* `RCTL(kc)` - applies right Control to *kc*
-* `LALT(kc)` - applies left Alt to *kc*
-* `RALT(kc)` - applies right Alt to *kc*
-* `LGUI(kc)` - applies left GUI (command/win) to *kc*
-* `RGUI(kc)` - applies right GUI (command/win) to *kc*
-
-You can also chain these, like this:
-
- LALT(LCTL(KC_DEL)) -- this makes a key that sends Alt, Control, and Delete in a single keypress.
-
-The following shortcuts automatically add `LSFT()` to keycodes to get commonly used symbols. Their long names are also available and documented in `/quantum/keymap_common.h`.
-
- KC_TILD ~
- KC_EXLM !
- KC_AT @
- KC_HASH #
- KC_DLR $
- KC_PERC %
- KC_CIRC ^
- KC_AMPR &
- KC_ASTR *
- KC_LPRN (
- KC_RPRN )
- KC_UNDS _
- KC_PLUS +
- KC_LCBR {
- KC_RCBR }
- KC_PIPE |
- KC_COLN :
-
-`MT(mod, kc)` - is *mod* (modifier key - MOD_LCTL, MOD_LSFT) when held, and *kc* when tapped. In other words, you can have a key that sends Esc (or the letter O or whatever) when you tap it, but works as a Control key or a Shift key when you hold it down.
-
-These are the values you can use for the `mod` in `MT()` (right-hand modifiers are not available):
-
- * MOD_LCTL
- * MOD_LSFT
- * MOD_LALT
- * MOD_LGUI
-
-These can also be combined like `MOD_LCTL | MOD_LSFT` e.g. `MT(MOD_LCTL | MOD_LSFT, KC_ESC)` which would activate Control and Shift when held, and send Escape when tapped.
-
-We've added shortcuts to make common modifier/tap (mod-tap) mappings more compact:
-
- * `CTL_T(kc)` - is LCTL when held and *kc* when tapped
- * `SFT_T(kc)` - is LSFT when held and *kc* when tapped
- * `ALT_T(kc)` - is LALT when held and *kc* when tapped
- * `GUI_T(kc)` - is LGUI when held and *kc* when tapped
- * `ALL_T(kc)` - is Hyper (all mods) when held and *kc* when tapped. To read more about what you can do with a Hyper key, see [this blog post by Brett Terpstra](http://brettterpstra.com/2012/12/08/a-useful-caps-lock-key/)
-
-### Temporarily setting the default layer
-
-`DF(layer)` - sets default layer to *layer*. The default layer is the one at the "bottom" of the layer stack - the ultimate fallback layer. This currently does not persist over power loss. When you plug the keyboard back in, layer 0 will always be the default. It is theoretically possible to work around that, but that's not what `DF` does.
-
-### Remember: These are just aliases
-
-These functions work the same way that their `ACTION_*` functions do - they're just quick aliases. To dig into all of the tmk ACTION_* functions, please see the [TMK documentation](https://github.com/jackhumbert/qmk_firmware/blob/master/tmk_core/doc/keymap.md#2-action).
-
-Instead of using `FNx` when defining `ACTION_*` functions, you can use `F(x)` - the benefit here is being able to use more than 32 function actions (up to 4096), if you happen to need them.
-
-## Macro shortcuts: Send a whole string when pressing just one key
-
-Instead of using the `ACTION_MACRO` function, you can simply use `M(n)` to access macro *n* - *n* will get passed into the `action_get_macro` as the `id`, and you can use a switch statement to trigger it. This gets called on the keydown and keyup, so you'll need to use an if statement testing `record->event.pressed` (see keymap_default.c).
-
-```c
-const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt) // this is the function signature -- just copy/paste it into your keymap file as it is.
-{
- switch(id) {
- case 0: // this would trigger when you hit a key mapped as M(0)
- if (record->event.pressed) {
- return MACRO( I(255), T(H), T(E), T(L), T(L), W(255), T(O), END ); // this sends the string 'hello' when the macro executes
- }
- break;
- }
- return MACRO_NONE;
-};
-```
-A macro can include the following commands:
-
-* I() change interval of stroke in milliseconds.
-* D() press key.
-* U() release key.
-* T() type key(press and release).
-* W() wait (milliseconds).
-* END end mark.
-
-So above you can see the stroke interval changed to 255ms between each keystroke, then a bunch of keys being typed, waits a while, then the macro ends.
-
-Note: Using macros to have your keyboard send passwords for you is a bad idea.
-
-### Additional keycode aliases for software-implemented layouts (Colemak, Dvorak, etc)
-
-Everything is assuming you're in Qwerty (in software) by default, but there is built-in support for using a Colemak or Dvorak layout by including this at the top of your keymap:
-
- #include "keymap_<layout>.h"
-
-Where <layout> is "colemak" or "dvorak". After including this line, you will get access to:
-
- * `CM_*` for all of the Colemak-equivalent characters
- * `DV_*` for all of the Dvorak-equivalent characters
-
-These implementations assume you're using Colemak or Dvorak on your OS, not on your keyboard - this is referred to as a software-implemented layout. If your computer is in Qwerty and your keymap is in Colemak or Dvorak, this is referred to as a firmware-implemented layout, and you won't need these features.
-
-To give an example, if you're using software-implemented Colemak, and want to get an `F`, you would use `CM_F` - `KC_F` under these same circumstances would result in `T`.
-
-## Additional language support
-
-In `quantum/keymap_extras/`, you'll see various language files - these work the same way as the alternative layout ones do. Most are defined by their two letter country/language code followed by an underscore and a 4-letter abbreviation of its name. `FR_UGRV` which will result in a `รน` when using a software-implemented AZERTY layout. It's currently difficult to send such characters in just the firmware (but it's being worked on - see Unicode support).
-
-## Unicode support
-
-You can currently send 4 hex digits with your OS-specific modifier key (RALT for OSX with the "Unicode Hex Input" layout) - this is currently limited to supporting one OS at a time, and requires a recompile for switching. 8 digit hex codes are being worked on. The keycode function is `UC(n)`, where *n* is a 4 digit hexidecimal. Enable from the Makefile.
-
-## Other firmware shortcut keycodes
-
-* `RESET` - puts the MCU in DFU mode for flashing new firmware (with `make dfu`)
-* `DEBUG` - the firmware into debug mode - you'll need hid_listen to see things
-* `BL_ON` - turns the backlight on
-* `BL_OFF` - turns the backlight off
-* `BL_<n>` - sets the backlight to level *n*
-* `BL_INC` - increments the backlight level by one
-* `BL_DEC` - decrements the backlight level by one
-* `BL_TOGG` - toggles the backlight
-* `BL_STEP` - steps through the backlight levels
-
-Enable the backlight from the Makefile.
-
-## MIDI functionalty
-
-This is still a WIP, but check out `quantum/keymap_midi.c` to see what's happening. Enable from the Makefile.
-
-## Bluetooth functionality
-
-This requires [some hardware changes](https://www.reddit.com/r/MechanicalKeyboards/comments/3psx0q/the_planck_keyboard_with_bluetooth_guide_and/?ref=search_posts), but can be enabled via the Makefile. The firmware will still output characters via USB, so be aware of this when charging via a computer. It would make sense to have a switch on the Bluefruit to turn it off at will.
+For the full Quantum feature list, see [the parent README.md](/README.md).
## Building
-Download or clone the whole firmware and navigate to the keyboard/planck folder. Once your dev env is setup, you'll be able to type `make` to generate your .hex - you can then use `make dfu` to program your PCB once you hit the reset button.
+Download or clone the whole firmware and navigate to the keyboard/%KEYBOARD% folder. Once your dev env is setup, you'll be able to type `make` to generate your .hex - you can then use the Teensy Loader to program your .hex file.
Depending on which keymap you would like to use, you will have to compile slightly differently.
@@ -171,10 +15,10 @@ Depending on which keymap you would like to use, you will have to compile slight
To build with the default keymap, simply run `make`.
### Other Keymaps
-Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `keymap_<name>.c` and see keymap document (you can find in top README.md) and existent keymap files.
+Several version of keymap are available in advance but you are recommended to define your favorite layout yourself. To define your own keymap create file named `<name>.c` and see keymap document (you can find in top README.md) and existent keymap files.
To build the firmware binary hex file with a keymap just do `make` with `KEYMAP` option like:
```
$ make KEYMAP=[default|jack|<name>]
```
-Keymaps follow the format **__keymap\_\<name\>.c__** and are stored in the `keymaps` folder. \ No newline at end of file
+Keymaps follow the format **__\<name\>.c__** and are stored in the `keymaps` folder. \ No newline at end of file
diff --git a/quantum/template/config.h b/quantum/template/config.h
index 9afedbcc07..7d6149f436 100644
--- a/quantum/template/config.h
+++ b/quantum/template/config.h
@@ -29,14 +29,14 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define DESCRIPTION A custom keyboard
/* key matrix size */
-#define MATRIX_ROWS 4
-#define MATRIX_COLS 12
+#define MATRIX_ROWS 2
+#define MATRIX_COLS 3
// Planck PCB default pin-out
// Change this to how you wired your keyboard
// COLS: Left to right, ROWS: Top to bottom
-#define COLS (int []){ F1, F0, B0, C7, F4, F5, F6, F7, D4, D6, B4, D7 }
-#define ROWS (int []){ D0, D5, B5, B6 }
+#define COLS (int []){ F1, F0, B0 }
+#define ROWS (int []){ D0, D5 }
/* COL2ROW or ROW2COL */
#define DIODE_DIRECTION COL2ROW
diff --git a/quantum/template/keymaps/default.c b/quantum/template/keymaps/default.c
new file mode 100644
index 0000000000..4121fd860c
--- /dev/null
+++ b/quantum/template/keymaps/default.c
@@ -0,0 +1,30 @@
+// This is the canonical layout file for the Quantum project. If you want to add another keyboard,
+// this is the style you want to emulate.
+
+#include "%KEYBOARD%.h"
+
+const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
+[0] = KEYMAP( /* Base */
+ KC_A, KC_1, KC_H, \
+ KC_TAB, KC_SPC \
+),
+};
+
+const uint16_t PROGMEM fn_actions[] = {
+
+};
+
+const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
+{
+ // MACRODOWN only works in this function
+ switch(id) {
+ case 0:
+ if (record->event.pressed) {
+ register_code(KC_RSFT);
+ } else {
+ unregister_code(KC_RSFT);
+ }
+ break;
+ }
+ return MACRO_NONE;
+};
diff --git a/quantum/template/keymaps/keymap_default.c b/quantum/template/keymaps/keymap_default.c
deleted file mode 100644
index 1e6684da7b..0000000000
--- a/quantum/template/keymaps/keymap_default.c
+++ /dev/null
@@ -1,66 +0,0 @@
-// This is the canonical layout file for the Quantum project. If you want to add another keyboard,
-// this is the style you want to emulate.
-
-#include "%KEYBOARD%.h"
-
-// Each layer gets a name for readability, which is then used in the keymap matrix below.
-// The underscores don't mean anything - you can have a layer called STUFF or any other name.
-// Layer names don't all need to be of the same length, obviously, and you can also skip them
-// entirely and just use numbers.
-#define _QW 0
-#define _CM 1
-#define _DV 2
-#define _LW 3
-#define _RS 4
-
-const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
-[_QW] = { /* Qwerty */
- {KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_BSPC},
- {KC_ESC, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT},
- {KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT },
- {M(0), KC_LCTL, KC_LALT, KC_LGUI, MO(_LW), KC_SPC, KC_SPC, MO(_RS), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
-},
-[_CM] = { /* Colemak */
- {KC_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC},
- {KC_ESC, KC_A, KC_R, KC_S, KC_T, KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT},
- {KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT },
- {M(0), KC_LCTL, KC_LALT, KC_LGUI, MO(_LW), KC_SPC, KC_SPC, MO(_RS), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
-},
-[_DV] = { /* Dvorak */
- {KC_TAB, KC_QUOT, KC_COMM, KC_DOT, KC_P, KC_Y, KC_F, KC_G, KC_C, KC_R, KC_L, KC_BSPC},
- {KC_ESC, KC_A, KC_O, KC_E, KC_U, KC_I, KC_D, KC_H, KC_T, KC_N, KC_S, KC_SLSH},
- {KC_LSFT, KC_SCLN, KC_Q, KC_J, KC_K, KC_X, KC_B, KC_M, KC_W, KC_V, KC_Z, KC_ENT },
- {M(0), KC_LCTL, KC_LALT, KC_LGUI, MO(_LW), KC_SPC, KC_SPC, MO(_RS), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
-},
-[_RS] = { /* RAISE */
- {KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSPC},
- {KC_TRNS, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_MINS, KC_EQL, KC_LBRC, KC_RBRC, KC_BSLS},
- {KC_TRNS, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, DF(_QW), DF(_CM), DF(_DV), RESET, KC_TRNS},
- {KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_MNXT, KC_VOLD, KC_VOLU, KC_MPLY}
-},
-[_LW] = { /* LOWER */
- {KC_TILD, KC_EXLM, KC_AT, KC_HASH, KC_DLR, KC_PERC, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, KC_BSPC},
- {KC_TRNS, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_UNDS, KC_PLUS, KC_LCBR, KC_RCBR, KC_PIPE},
- {KC_TRNS, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, DF(_QW), DF(_CM), DF(_DV), RESET, KC_TRNS},
- {KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_MNXT, KC_VOLD, KC_VOLU, KC_MPLY}
-}
-};
-
-const uint16_t PROGMEM fn_actions[] = {
-
-};
-
-const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
-{
- // MACRODOWN only works in this function
- switch(id) {
- case 0:
- if (record->event.pressed) {
- register_code(KC_RSFT);
- } else {
- unregister_code(KC_RSFT);
- }
- break;
- }
- return MACRO_NONE;
-};
diff --git a/quantum/template/template.h b/quantum/template/template.h
index de3edf3242..d4d78e4c91 100644
--- a/quantum/template/template.h
+++ b/quantum/template/template.h
@@ -11,16 +11,12 @@
// The first section contains all of the arguements
// The second converts the arguments into a two-dimensional array
#define KEYMAP( \
- k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
- k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, \
- k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, \
- k30, k31, k32, k33, k34, k35, k37, k38, k39, k3a, k3b \
+ k00, k01, k02, \
+ k10, k11, \
) \
{ \
- { k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b }, \
- { k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b }, \
- { k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b }, \
- { k30, k31, k32, k33, k34, k35, k35, k37, k38, k39, k3a, k3b } \
+ { k00, k01, k02 }, \
+ { k10, KC_NO, k11 }, \
}
void * matrix_init_user(void);