summaryrefslogtreecommitdiff
path: root/keyboards/ymdk/melody96/keymaps/zunger
diff options
context:
space:
mode:
Diffstat (limited to 'keyboards/ymdk/melody96/keymaps/zunger')
-rw-r--r--keyboards/ymdk/melody96/keymaps/zunger/config.h22
-rw-r--r--keyboards/ymdk/melody96/keymaps/zunger/keymap.c489
-rw-r--r--keyboards/ymdk/melody96/keymaps/zunger/readme.md78
-rw-r--r--keyboards/ymdk/melody96/keymaps/zunger/rules.mk2
4 files changed, 591 insertions, 0 deletions
diff --git a/keyboards/ymdk/melody96/keymaps/zunger/config.h b/keyboards/ymdk/melody96/keymaps/zunger/config.h
new file mode 100644
index 0000000000..cc06440e0d
--- /dev/null
+++ b/keyboards/ymdk/melody96/keymaps/zunger/config.h
@@ -0,0 +1,22 @@
+/* Copyright 2018 MechMerlin
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#pragma once
+
+// Enable cmd-option-escape on mac.
+#define GRAVE_ESC_ALT_OVERRIDE
+
+// place overrides here
diff --git a/keyboards/ymdk/melody96/keymaps/zunger/keymap.c b/keyboards/ymdk/melody96/keymaps/zunger/keymap.c
new file mode 100644
index 0000000000..d0d2698b7a
--- /dev/null
+++ b/keyboards/ymdk/melody96/keymaps/zunger/keymap.c
@@ -0,0 +1,489 @@
+/* Copyright 2019 Yonatan Zunger
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+#include QMK_KEYBOARD_H
+#include <assert.h>
+
+// This keymap is designed to make it easy to type in a wide variety of languages, as well as
+// generate mathematical symbols (à la Space Cadet).
+//
+// LAYER MAGIC (aka, typing in many alphabets)
+// This keyboard has three "base" layers: QWERTY, GREEK, and CADET. The GREEK and CADET layers
+// are actually full of Unicode points, and so which point they generate depends on things like
+// whether the shift key is down. To handle this, each of those layers is actually *two* layers, one
+// with and one without shift. In our main loop, we manage modifier state detection, as well as
+// layer switch detection, and pick the right layer on the fly.
+// Layers are selected with a combination of three keys. The "Greek" and "Cadet" keys act like
+// modifiers: When held down, they transiently select the indicated base layer. The "Layer Lock" key
+// locks the value of the base layer at whatever is currently held; so e.g., if you hold Greek +
+// Layer Lock, you'll stay in Greek mode until you hit Layer Lock again without any of the mods
+// held.
+// TODO: This system of layer selection is nice for math, but it's not very nice for actually
+// typing in multiple languages. It seems like a better plan will be to reserve one key for each
+// base layer -- maybe fn + F(n) -- which can either be held as a modifier or tapped to switch
+// layers. That will open up adding some more languages, like Yiddish, but to do this effectively
+// we'll need to find a good UI with which to show the currently selected layer. Need to check what
+// the melody96 has in the way of outputs (LEDs, sound, etc).
+//
+// ACCENT MAGIC (aka, typing conveniently in Romance languages)
+// We want to support easy typing of diacritical marks. We can't rely on the host OS for this,
+// because (e.g.) on MacOS, to make any of the other stuff work, we need to be using the Unicode
+// input method at the OS level, which breaks all the normal accent stuff on that end. So we do it
+// ourselves. Accents can actually be invoked in two different ways: one fast and very compatible,
+// one very versatile but with occasional compatibility problems.
+//
+// THE MAIN WAY: You can hit one of the "accent request" key patterns immediately *before* typing
+// a letter to be accented. It will emit the corresponding accented Unicode. For example, you can
+// hit fn-e to request an acute accent, followed by i, and it will output í, U+00ED LATIN SMALL
+// LETTER I WITH ACUTE. These "combined characters" are in Unicode normal form C (NFKC), which is
+// important because many European websites and apps, in particular, tend to behave very badly
+// (misunderstanding and/or crashing) when presented with characters in other forms! The catch is
+// that this only works for the various combinations of letters and accents found in the Latin-1
+// supplement block of Unicode -- basically, things you need for Western European languages.
+//
+// (NB: If you make an accent request followed by a letter which can't take the corresponding
+// accent, it will output the uncombined form of the accent followed by whatever you typed; so
+// e.g., if you hit fn-e followed by f, it will output ´f, U+00B4 ACUTE ACCENT followed by an
+// ordinary f. This is very similar to the default behavior of MacOS.)
+//
+// THE FLEXIBLE WAY: If you hit the accent request with a shift -- e.g., fn-shift-e -- it will
+// instead immediately output the corresponding *combining* Unicode accent mark, which will modify
+// the *previous* character you typed. For example, if you type i followed by fn-shift-e, it will
+// generate í. But don't be fooled by visual similarity: unlike the previous example, this one is
+// an ordinary i followed by U+0301 COMBINING ACUTE ACCENT. It's actually *two symbols*, and this
+// is Unicode normal form D (NFKD). Unlike NFKC, there are NFKD representations of far more
+// combinations of letters and accents, and it's easy to add more of these if you need. (The NFKC
+// representation of such combinations is identical to their NFKD representation)
+//
+// Programs that try to compare Unicode strings *should* first normalize them by converting them
+// all into one normal form or another, and there are functions in every programming language to
+// do this -- e.g., JavaScript's string.normalize() -- but lots of programmers fail to understand
+// this, and so write code that massively freaks out when it encounters the wrong form.
+//
+// The current accent request codes are modeled on the ones in MacOS.
+//
+// fn+` Grave accent (`)
+// fn+e Acute accent (´)
+// fn+i Circumflex (^)
+// fn+u Diaresis / umlaut / trema (¨)
+// fn+c Cedilla (¸)
+// fn+n Tilde (˜)
+//
+// Together, these functions make for a nice "polyglot" keyboard: one that can easily type in a wide
+// variety of languages, which is very useful for people who, well, need to type in a bunch of
+// languages.
+//
+// The major TODOs are:
+// - Update the layer selection logic (and add visible layer cues);
+// - Factor the code below so that the data layers are more clearly separated from the code logic,
+// so that other users of this keymap can easily add whichever alphabets they need without
+// having to deeply understand the implementation.
+
+
+enum custom_keycodes {
+ // We provide special layer management keys:
+ // GREEK triggers the Greek (aka "Front") layer, or the SHIFTGREEK layer when shift is held.
+ // (Because we use Unicode, we need to implement shift-handling at the firmware level,
+ // rather than the OS level like we do in the QWERTY layer)
+ // CADET or GREEK+ALT triggers the Cadet (aka "Top") layer, or the SHIFTCADET layer when
+ // shift is held.
+ // LAYER_LOCK locks the "base" layer (i.e., QWERTY, GREEK, or CADET) to the value which is
+ // pressed at the moment that it is being released. When a layer lock is set, the
+ // analogous layer modifier key is reversed; e.g., if you lock the GREEK layer, then the
+ // GREEK button bounces you back to QWERTY.
+ //
+ // We also parse the shift, alt, and caps lock keys to provide management of those which is
+ // compatible with these various layers.
+ KC_GREEK = SAFE_RANGE,
+ KC_CADET,
+ KC_LAYER_LOCK,
+
+ // These are the keycodes generated by the various "accent request" keystrokes.
+ KC_ACCENT_START,
+ KC_CGRV = KC_ACCENT_START, // Grave accent
+ KC_CAGU, // Acute accent
+ KC_CDIA, // Diaresis / umlaut / trema
+ KC_CCIR, // Circumflex
+ KC_CCED, // Cedilla
+ KC_CTIL, // Tilde
+ KC_ACCENT_END,
+};
+
+enum layers_keymap {
+ _QWERTY = 0,
+ _FUNCTION,
+
+ _GREEK,
+ _SHIFTGREEK,
+ _CADET,
+ _SHIFTCADET,
+};
+
+// This is so that H(xxxx) has the same width as _______, which makes the grids more legible.
+#define H(x) UC(0x##x)
+#define MO_FN MO(_FUNCTION)
+#define KC_LLCK KC_LAYER_LOCK
+
+
+const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
+ // NB: Using GESC for escape in the QWERTY layer as a temporary hack because I messed up the
+ // switch on the KC_GRV key; change back to KC_ESC once this is fixed.
+ [_QWERTY] = LAYOUT_hotswap(
+ KC_GESC, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_HOME, KC_END, KC_PGUP, KC_PGDN, KC_MPLY, KC_BRK,
+ KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSPC, KC_LLCK, KC_PSLS, KC_PAST, KC_PMNS,
+ KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, KC_P7, KC_P8, KC_P9,
+ KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, KC_P4, KC_P5, KC_P6, KC_PPLS,
+ KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, KC_UP, KC_P1, KC_P2, KC_P3,
+ KC_LCTL, KC_LALT, KC_LGUI, KC_SPC, MO_FN, KC_GREEK,KC_CADET,KC_LEFT, KC_DOWN, KC_RGHT, KC_P0, KC_PDOT, KC_PENT),
+ /* The Greek layers. Shown here are the QWERTY layer (for visual reference) and the two Greek
+ * layers.
+ * ,----------------------------------------------------------------------------
+ * | ` |F1 |F2 |F3 |F4 |F5 |F6 |F7 |F8 |F9 |F10|F11|F12|HOM|END|PGU|PGD|MUT|BRK| QWERTY
+ * | ` | ₁ | ₂ | ₃ | ₄ | ₅ | ₆ | ₇ | ₈ | ₉ | ₀ | ₋ | ₊ | ₍ | ₎ | | | | | SHIFTGREEK
+ * | ` | ¹ | ² | ³ | ⁴ | ⁵ | ⁶ | ⁷ | ⁸ | ⁹ | ⁰ | ⁻ | ⁺ | ⁽ | ⁾ | | | | | GREEK
+ * |---------------------------------------------------------------------------|
+ * | ` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | - | + | BKSPC |LCK| / | * | - |
+ * | ` | ¿ | | € | | | | | | | | | ≁ | BKSPC |LCK| | ⊗ | |
+ * | | | | | | | | | | | | ∝ | ∼ | BKSPC |LCK| ⊘ | ⊙ | ⊖ |
+ * |---------------------------------------------------------------------------|
+ * | TAB | Q | W | E | R | T | Y | U | I | O | P | [ | ] | \ | 7 | 8 | 9 | |
+ * | | Θ | Ω | Ε | Ρ | Τ | Ψ | Υ | Ι | Ο | Π | | | | | | | |
+ * | | θ | ω | ε | ρ | τ | ψ | υ | ι | ο | π | | | | | | | |
+ * |-----------------------------------------------------------------------| + |
+ * | CTRL | A | S | D | F | G | H | J | K | L | ; | ' | RET | 4 | 5 | 6 | ⊕ |
+ * | CTRL | Α | Σ | Δ | Φ | Γ | Η | | Κ | Λ | … | ∴ | RET | | | | |
+ * | CTRL | α | σ | δ | φ | γ | η | ϑ | κ | λ | ⋯ | ⋅ | RET | | | | |
+ * |-----------------------------------------------------------------------|---|
+ * | SHIFT | Z | X | C | V | B | N | M | , | . | / |SHFT | ↑ | 1 | 2 | 3 | |
+ * | SHIFT | Ζ | Ξ | Χ | ✔ | Β | Ν | Μ | ≲ | ≳ | |SHFT | | | | | |
+ * | SHIFT | ζ | ξ | χ | ς | β | ν | μ | ≪ | ≫ | ∫ |SHFT | | | | | |
+ * |-----------------------------------------------------------------------|ENT|
+ * | CTL | ALT| CMD| SPACE | α | β | γ | ← | ↓ | → | 0 | . | |
+ * | CTL | ALT| CMD| SPACE | α | β | γ | | | | | | |
+ * | CTL | ALT| CMD| SPACE | α | β | γ | | | | | | |
+ * `---------------------------------------------------------------------------'
+ */
+ [_GREEK] = LAYOUT_hotswap(
+ KC_GRV, H(00b9), H(00b2), H(00b3), H(2074), H(2075), H(2076), H(2077), H(2078), H(2079), H(2070), H(207b), H(207a), H(207d), H(207e), XXXXXXX, XXXXXXX, XXXXXXX, _______,
+ KC_GRV, _______, _______, _______, _______, _______, _______, _______, H(00b0), _______, _______, H(221d), H(223c), _______, _______, H(2298), H(2299), H(2296),
+ _______, H(03b8), H(03c9), H(03b5), H(03c1), H(03c4), H(03c8), H(03c5), H(03b9), H(03bf), H(03c0), KC_LBRC, KC_RBRC, KC_BSLS, KC_P7, KC_P8, KC_P9,
+ _______, H(03b1), H(03c3), H(03b4), H(03c6), H(03b3), H(03b7), H(03d1), H(03ba), H(03bb), H(22ef), H(22c5), _______, KC_P4, KC_P5, KC_P6, H(2295),
+ _______, H(03b6), H(03be), H(03c7), H(03c2), H(03b2), H(03bd), H(03bc), H(226a), H(226b), H(222b), _______, _______, KC_P1, KC_P2, KC_P3,
+ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_P0, KC_PDOT, KC_PENT),
+ [_SHIFTGREEK] = LAYOUT_hotswap(
+ KC_GRV, H(2081), H(2082), H(2083), H(2084), H(2085), H(2086), H(2087), H(2088), H(2089), H(2080), H(208b), H(208a), H(208d), H(208e), XXXXXXX, XXXXXXX, XXXXXXX, _______,
+ KC_GRV, H(00bf), _______, H(20ac), _______, _______, _______, _______, _______, _______, _______, XXXXXXX, H(2241), _______, _______, XXXXXXX, H(2297), XXXXXXX,
+ _______, H(0398), H(03a9), H(0395), H(03a1), H(03a4), H(03a8), H(03a5), H(0399), H(039f), H(03a0), KC_LBRC, KC_RBRC, KC_BSLS, KC_P7, KC_P8, KC_P9,
+ _______, H(0391), H(03a3), H(0394), H(03a6), H(0393), H(0397), XXXXXXX, H(039a), H(039b), H(2026), H(2234), _______, KC_P4, KC_P5, KC_P6, H(2295),
+ _______, H(0396), H(039e), H(03a7), H(2714), H(0392), H(039d), H(039c), H(2272), H(2273), XXXXXXX, _______, _______, KC_P1, KC_P2, KC_P3,
+ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_P0, KC_PDOT, KC_PENT),
+ /* The Cadet layers. Again, we show the QWERTY layer and the two cadet layers.
+ * ,----------------------------------------------------------------------------
+ * | ` |F1 |F2 |F3 |F4 |F5 |F6 |F7 |F8 |F9 |F10|F11|F12|HOM|END|PGU|PGD|MUT|BRK| QWERTY
+ * | ∅ | | | | | | | | | | | | | | | | | | | SHIFTCADET
+ * | ¬ | | | | | | | | | | | | | | | | | | | CADET
+ * |---------------------------------------------------------------------------|
+ * | ` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | - | + | BKSPC |LCK| / | * | - |
+ * | ` | ¡ | | £ | | | | | ° | | | * | ∓ | BKSPC |LCK| | | |
+ * | | | | | | | | | | | | | ± | BKSPC |LCK| | × | |
+ * |---------------------------------------------------------------------------|
+ * | TAB | Q | W | E | R | T | Y | U | I | O | P | [ | ] | \ | 7 | 8 | 9 | |
+ * | | ℚ | | | ℝ | ⊆ | ⊇ | | ℵ | ∄ | | ∉ | | | * | * | * | |
+ * | | ∧ | ∨ | ∩ | ∪ | ⊂ | ⊃ | ∀ | ∞ | ∃ | ∂ | ∈ | | | * | * | * | | [1]
+ * |-----------------------------------------------------------------------| + |
+ * | CTRL | A | S | D | F | G | H | J | K | L | ; | ' | RET | 4 | 5 | 6 | ⊕ |
+ * | CTRL | Å | | ∇ | | ⇑ | ⇓ | ⇐ | ⇒ | ⇔ | | | RET | * | * | * | |
+ * | CTRL | ⟘ | ⊤ | ⊢ | ⊣ | ↑ | ↓ | ← | → | ↔ | | | RET | * | * | * | | [1]
+ * |-----------------------------------------------------------------------|---|
+ * | SHIFT | Z | X | C | V | B | N | M | , | . | / |SHFT | ↑ | 1 | 2 | 3 | |
+ * | SHIFT | ℤ | ℂ | | ≉ | ≢ | ℕ | | | | |SHFT | | * | * | * | |
+ * | SHIFT | | ≠ | | ≈ | ≡ | ≤ | ≥ | | | ÷ |SHFT | | * | * | * | | [1]
+ * |-----------------------------------------------------------------------|ENT|
+ * | CTL | ALT| CMD| SPACE | α | β | γ | ← | ↓ | → | 0 | . | |
+ * | CTL | ALT| CMD| SPACE | α | β | γ | | | | | | |
+ * | CTL | ALT| CMD| SPACE | α | β | γ | | | | | | |
+ * `---------------------------------------------------------------------------'
+ * [1] CADET + numpad moves the mouse. SHIFT+CADET+NUMPAD moves it more quickly. CADET+5
+ * clicks the mouse, and SHIFT+CADET+FIVE right-clicks.
+ */
+ [_CADET] = LAYOUT_hotswap(
+ H(00AC), KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, _______,
+ KC_GRV, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, H(00b1), _______, _______, XXXXXXX, H(00d7), XXXXXXX,
+ _______, H(2227), H(2228), H(2229), H(222a), H(2282), H(2283), H(2200), H(221e), H(2203), H(2202), H(2208), XXXXXXX, XXXXXXX, KC_P7, KC_P8, KC_P9,
+ _______, H(22a5), H(22a4), H(22a2), H(22a3), H(2191), H(2193), H(2190), H(2192), H(2194), XXXXXXX, XXXXXXX, _______, KC_P4, KC_P5, KC_P6, XXXXXXX,
+ _______, XXXXXXX, H(2260), XXXXXXX, H(2248), H(2261), H(2264), H(2265), XXXXXXX, XXXXXXX, H(00f7), _______, _______, KC_P1, KC_P2, KC_P3,
+ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_P0, KC_PDOT, KC_PENT),
+ [_SHIFTCADET] = LAYOUT_hotswap(
+ H(2205), KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, _______,
+ KC_GRV, H(00a1), XXXXXXX, H(00a3), XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, H(2213), _______, _______, XXXXXXX, XXXXXXX, XXXXXXX,
+ _______, H(211a), XXXXXXX, XXXXXXX, H(211d), H(2286), H(2287), XXXXXXX, H(2135), H(2204), XXXXXXX, H(2209), XXXXXXX, XXXXXXX, KC_P7, KC_P8, KC_P9,
+ _______, H(212b), XXXXXXX, H(2207), XXXXXXX, H(21d1), H(21d3), H(21d0), H(21d2), H(21d4), XXXXXXX, XXXXXXX, _______, KC_P4, KC_P5, KC_P6, XXXXXXX,
+ _______, H(2124), H(2102), XXXXXXX, H(2249), H(2262), H(2115), XXXXXXX, XXXXXXX, XXXXXXX, H(00f7), _______, _______, KC_P1, KC_P2, KC_P3,
+ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_P0, KC_PDOT, KC_PENT),
+
+ // Function layer is mostly for keyboard meta-control operations, but also contains the combining
+ // accent marks. These are deliberately placed to match where the analogous controls go on Mac OS.
+ [_FUNCTION] = LAYOUT_hotswap(
+ KC_CGRV, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_MUTE, KC_VOLD, KC_VOLU, _______, _______, RESET,
+ KC_CGRV, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
+ _______, _______, _______, KC_CAGU, _______, _______, _______, KC_CDIA, KC_CCIR, _______, _______, _______, _______, _______, _______, _______, _______,
+ _______, _______, _______, UC_M_OS, UC_M_LN, UC_M_WI, UC_M_BS, UC_M_WC, _______, _______, _______, _______, _______, _______, _______, _______, _______,
+ _______, _______, _______, KC_CCED, _______, _______, KC_CTIL, _______, _______, _______, _______, _______, _______, _______, _______, _______,
+ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______),
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Accent implementation
+//
+// In the body of process_record_user, we store an "accent_request", which is the accent keycode if
+// one was just selected, or zero otherwise. When the *next* key is hit, we look up whether the
+// accent request plus that next keycode (plus the state of the shift key) together amount to an
+// interesting combined (NFKC) character, and if so, emit it; otherwise, we emit the accent as a
+// separate character and then process the next key normally. The resulting UI behavior is similar
+// to that of the combining accent keys in MacOS.
+//
+// We store two arrays, depending on whether shift is or isn't held. Each is two-dimensional, with
+// its outer key by the next keycode struck, and the inner key by the accent requested. The outer
+// array has KC_Z + 1 as its upper bound, so that we can save memory by only coding alphabetic keys.
+// The contents are either Unicode code points, or zero to indicate that we don't have a point for
+// this combination.
+
+#define KC_NUM_ACCENTS (KC_ACCENT_END - KC_ACCENT_START)
+#define KC_NUM_SLOTS (KC_Z + 1)
+
+const uint16_t PROGMEM unshifted_accents[KC_NUM_SLOTS][KC_NUM_ACCENTS] = {
+ // KC_CGRV, KC_CAGU, KC_CDIA, KC_CCIR, KC_CCED, KC_CTIL
+ [KC_A] = { 0x00e0, 0x00e1, 0x00e4, 0x00e2, 0, 0x00e3 },
+ [KC_E] = { 0x00e8, 0x00e9, 0x00eb, 0x00ea, 0, 0 },
+ [KC_I] = { 0x00ec, 0x00ed, 0x00ef, 0x00ee, 0, 0 },
+ [KC_O] = { 0x00f2, 0x00f3, 0x00f6, 0x00f4, 0, 0x00f5 },
+ [KC_U] = { 0x00f9, 0x00fa, 0x00fc, 0x00fb, 0, 0 },
+ [KC_Y] = { 0, 0, 0x00ff, 0, 0, 0 },
+ [KC_N] = { 0, 0, 0, 0, 0, 0x00f1 },
+ [KC_C] = { 0, 0, 0, 0, 0x00e7, 0 },
+};
+
+const uint16_t PROGMEM shifted_accents[KC_NUM_SLOTS][KC_NUM_ACCENTS] = {
+ // KC_CGRV, KC_CAGU, KC_CDIA, KC_CCIR, KC_CCED, KC_CTIL
+ [KC_A] = { 0x00c0, 0x00c1, 0x00c4, 0x00c2, 0, 0x00c3 },
+ [KC_E] = { 0x00c8, 0x00c9, 0x00cb, 0x00ca, 0, 0 },
+ [KC_I] = { 0x00cc, 0x00cd, 0x00cf, 0x00ce, 0, 0 },
+ [KC_O] = { 0x00d2, 0x00d3, 0x00d6, 0x00d4, 0, 0x00d5 },
+ [KC_U] = { 0x00d9, 0x00da, 0x00dc, 0x00db, 0, 0 },
+ [KC_Y] = { 0, 0, 0x00df, 0, 0, 0 },
+ [KC_N] = { 0, 0, 0, 0, 0, 0x00d1 },
+ [KC_C] = { 0, 0, 0, 0, 0x00c7, 0 },
+};
+
+// The uncombined and combined forms of the accents, for when we want to emit them as single
+// characters.
+const uint16_t PROGMEM uncombined_accents[KC_NUM_ACCENTS] = {
+ [KC_CGRV - KC_ACCENT_START] = 0x0060,
+ [KC_CAGU - KC_ACCENT_START] = 0x00b4,
+ [KC_CDIA - KC_ACCENT_START] = 0x00a8,
+ [KC_CCIR - KC_ACCENT_START] = 0x005e,
+ [KC_CCED - KC_ACCENT_START] = 0x00b8,
+ [KC_CTIL - KC_ACCENT_START] = 0x02dc,
+};
+
+const uint16_t PROGMEM combined_accents[KC_NUM_ACCENTS] = {
+ [KC_CGRV - KC_ACCENT_START] = 0x0300,
+ [KC_CAGU - KC_ACCENT_START] = 0x0301,
+ [KC_CDIA - KC_ACCENT_START] = 0x0308,
+ [KC_CCIR - KC_ACCENT_START] = 0x0302,
+ [KC_CCED - KC_ACCENT_START] = 0x0327,
+ [KC_CTIL - KC_ACCENT_START] = 0x0303,
+};
+
+// This function manages keypresses that happen after an accent has been selected by an earlier
+// keypress.
+// Args:
+// accent_key: The accent key which was earlier selected. This must be in the range
+// [KC_ACCENT_START, KC_ACCENT_END).
+// keycode: The keycode which was just pressed.
+// is_shifted: The current shift state (as set by a combination of shift and caps lock)
+// force_no_accent: If true, we're in a situation where we want to force there to be no
+// accent combination -- if e.g. we're in a non-QWERTY layer, or if other modifier keys
+// are held.
+//
+// Returns true if the keycode has been completely handled by this function (and so should not be
+// processed further by process_record_user) or false otherwise.
+bool process_key_after_accent(
+ uint16_t accent_key,
+ uint16_t keycode,
+ bool is_shifted,
+ bool force_no_accent
+) {
+ assert(accent_key >= KC_ACCENT_START);
+ assert(accent_key < KC_ACCENT_END);
+ const int accent_index = accent_key - KC_ACCENT_START;
+
+ // If the keycode is outside A..Z, or force_no_accent is set, we know we shouldn't even bother
+ // with a table lookup.
+ if (keycode <= KC_Z && !force_no_accent) {
+ // Pick the correct array. Because this is progmem, we're going to need to do the
+ // two-dimensional array indexing by hand, and so we just cast it to a single-dimensional array.
+ const uint16_t *points = (const uint16_t*)(is_shifted ? shifted_accents : unshifted_accents);
+ const uint16_t code_point = pgm_read_word_near(points + KC_NUM_ACCENTS * keycode + accent_index);
+ if (code_point) {
+ register_unicode(code_point);
+ return true;
+ }
+ }
+
+ // If we get here, there was no accent match. Emit the accent as its own character, and then let
+ // the caller figure out what to do next.
+ register_unicode(pgm_read_word_near(uncombined_accents + accent_index));
+ return false;
+}
+
+// Layer bitfields.
+#define GREEK_LAYER (1UL << _GREEK)
+#define SHIFTGREEK_LAYER (1UL << _SHIFTGREEK)
+#define CADET_LAYER (1UL << _CADET)
+#define SHIFTCADET_LAYER (1UL << _SHIFTCADET)
+// The layers we don't touch.
+#define LAYER_MASK ~(GREEK_LAYER|SHIFTGREEK_LAYER|CADET_LAYER|SHIFTCADET_LAYER)
+
+bool process_record_user(uint16_t keycode, keyrecord_t *record) {
+ // We track these persistent globals and manage them on our own, rather than trying to rely on
+ // get_mods or the like, because this function is called *before* that's updated!
+ static bool shift_held = false;
+ static bool alt_held = false;
+ static bool ctrl_held = false;
+ static bool super_held = false;
+ static bool greek_held = false;
+ static bool cadet_held = false;
+
+ // These are where we remember the values of lock states.
+ static bool shift_lock = false;
+ static int layer_lock = _QWERTY;
+
+ // The accent request, or zero if there isn't one.
+ static uint16_t accent_request = 0;
+
+ // If this is set to true, don't trigger any handling of pending accent requests. That's what we
+ // want to do if e.g. the user just hit the shift key or something.
+ bool ignore_accent_change = !record->event.pressed;
+
+ // Step 1: Process any modifier key state changes, so we can maintain that state.
+ if (keycode == KC_LSHIFT || keycode == KC_RSHIFT) {
+ shift_held = record->event.pressed;
+ ignore_accent_change = true;
+ } else if (keycode == KC_LALT || keycode == KC_RALT) {
+ alt_held = record->event.pressed;
+ ignore_accent_change = true;
+ } else if (keycode == KC_LCTRL || keycode == KC_RCTRL) {
+ ctrl_held = record->event.pressed;
+ ignore_accent_change = true;
+ } else if (keycode == KC_LGUI || keycode == KC_RGUI) {
+ super_held = record->event.pressed;
+ ignore_accent_change = true;
+ } else if (keycode == KC_GREEK) {
+ greek_held = record->event.pressed;
+ ignore_accent_change = true;
+ } else if (keycode == KC_CADET) {
+ cadet_held = record->event.pressed;
+ ignore_accent_change = true;
+ }
+
+ // Step 2: Figure out which layer we're supposed to be in, by transforming all the prior stuff
+ // into layer requests.
+ const bool greek_request = (greek_held && !alt_held);
+ const bool cadet_request = (cadet_held || (greek_held && alt_held));
+
+ // Now, handle the lock keys. We store next_layer_lock in a local variable so that we can
+ // determine the layer to pick right now before we update layer_lock.
+ int next_layer_lock = layer_lock;
+ if (keycode == KC_CAPS) {
+ // If we're in QWERTY mode, caps lock is already going to be managed by the host OS, but by
+ // tracking it ourselves we can also usefully apply it to the GREEK and CADET layers.
+ if (record->event.pressed) {
+ shift_lock = !shift_lock;
+ }
+ } else if (keycode == KC_LAYER_LOCK) {
+ if (record->event.pressed) {
+ if (cadet_request) {
+ next_layer_lock = _CADET;
+ } else if (greek_request) {
+ next_layer_lock = _GREEK;
+ } else {
+ next_layer_lock = _QWERTY;
+ }
+ }
+ }
+
+ // OK! Now we know which buttons are being held, and the current and upcoming states of the locks.
+ // We can compute our new base layer. Remember that the CADET and GREEK keys act as their own
+ // antonyms if they match the layer lock -- e.g., if you have CADET locked, then CADET+X generates
+ // QWERTY-X.
+ int base_layer;
+ if (cadet_request) {
+ base_layer = (layer_lock == _CADET ? _QWERTY : _CADET);
+ } else if (greek_request) {
+ base_layer = (layer_lock == _GREEK ? _QWERTY : _GREEK);
+ } else {
+ base_layer = layer_lock;
+ }
+
+ const bool shifted = (shift_held != shift_lock);
+ int actual_layer;
+ if (base_layer == _CADET) {
+ actual_layer = (shifted ? _SHIFTCADET : _CADET);
+ } else if (base_layer == _GREEK) {
+ actual_layer = (shifted ? _SHIFTGREEK : _GREEK);
+ } else {
+ // We don't do shifting for the QWERTY layer, since for that we emit USB HID codes and shifting
+ // is managed by the host OS.
+ actual_layer = _QWERTY;
+ }
+
+ // And now we can update the layer lock and the actual firmware layer selector.
+ layer_lock = next_layer_lock;
+ layer_state_t new_layer_state = (layer_state & LAYER_MASK) | (1UL << actual_layer);
+ if (new_layer_state != layer_state) {
+ layer_state_set(new_layer_state);
+ }
+
+ // Step 3: Handle accents. If there's a pending accent request, process it. If what the user just
+ // hit creates a new accent request, update the pending state for the next keypress.
+ if (!ignore_accent_change && accent_request && record->event.pressed) {
+ // Only do the accent stuff if we're in the QWERTY layer and we aren't modifying something.
+ const bool force_no_accent = (
+ actual_layer != _QWERTY ||
+ ctrl_held ||
+ super_held ||
+ alt_held
+ );
+ const uint16_t old_accent = accent_request;
+ accent_request = 0;
+ if (process_key_after_accent(old_accent, keycode, shifted, force_no_accent)) {
+ return false;
+ }
+ }
+
+ // And if a new accent request just arrived, update accent_request.
+ if (keycode >= KC_ACCENT_START && keycode < KC_ACCENT_END && record->event.pressed) {
+ if (shifted) {
+ // Shift + accent request generates the combining accent key, and leaves accent_request alone.
+ register_unicode(pgm_read_word_near(combined_accents + keycode - KC_ACCENT_START));
+ return false;
+ } else {
+ accent_request = keycode;
+ }
+ }
+
+ return true;
+}
diff --git a/keyboards/ymdk/melody96/keymaps/zunger/readme.md b/keyboards/ymdk/melody96/keymaps/zunger/readme.md
new file mode 100644
index 0000000000..3eb64a2e73
--- /dev/null
+++ b/keyboards/ymdk/melody96/keymaps/zunger/readme.md
@@ -0,0 +1,78 @@
+* The "Cadet-Style" keymap for the melody96.
+* Author: Yonatan Zunger (zunger@gmail.com)
+
+This is an experimental keymap being used both for practical reasons (as my daily driver) and to
+work out the ideas of a "space-cadet-style" keyboard which can type text and mathematical symbols
+with equal ease. It's designed for anyone who frequently needs to do this outside of a LaTeX
+environment, or for anyone who loves the old "Space Cadet" keyboard! And it works at its best when
+you have actual Cadet keycaps (like SA Symbolics) installed, because those keycaps will actually
+show what you get.
+
+The core idea of this keyboard is that, in addition to a QWERTY base layer and a function layer, it
+supports two additional base layers -- the GREEK layer (the analogue of the Space Cadet "Greek," or
+"Front," keys) and the CADET layer (the analogue of the Space Cadet "Top" keys). These layers use
+Unicode to generate all of the mathematical symbols you can find on a traditional Space Cadet
+layout, plus a bunch of extras.
+
+Because Unicode can't be encoded using the traditional USB HID protocol, QMK does some clever but
+horrifying things to fool your OS. One consequence of this is that the shift key needs to be handled
+by the keyboard firmware, not the host OS. To handle this, we have two additional layers --
+SHIFTGREEK and SHIFTCADET -- and handle the flipping between all of these layers here in the
+firmware.
+
+*The simple bit: Using this layout on a Melody96*
+
+At the core of this layout are three special modifier keys and two special lock keys:
+
+* The GREEK key, to the right of the spacebar, activates the GREEK layer. GREEK+SHIFT activates
+ SHIFTGREEK. These keys generate Greek letters on the letter keys (thus the name), and a few
+ mathematical symbols on other keys. They correspond to the notations on the front of traditional
+ Space Cadet keys; if your capset doesn't include those (alas, most don't), they're the "pretty
+ obvious" mappings.
+* The CADET key, to the right of GREEK, activates the CADET layer. These are the symbols above the
+ letters on a Space Cadet layout. CADET+SHIFT activates the SHIFTCADET layer, with even more
+ symbols.
+* The FUNCTION key, to the right of CADET, activates the function layer. This is where you have a
+ reset mechanism, a selector for which Unicode input type you want, and so on.
+
+Additionally, GREEK+ALT is equivalent to CADET. This is handy for other keyboards where you don't
+have room for this many modifiers.
+
+The lock keys are:
+
+* Caps lock, if you use it, will also act as a "shift lock" for the Greek and Cadet layers. Shift
+ lock is slightly different, in that while it is engaged shift will _dis_engage it; that's actually
+ pretty useful when typing math.
+* An additional "layer lock" key, by default where "num lock" usually goes, will lock the choice of
+ base layer. To use it, hold down any invocation of the GREEK or CADET layers, or none at all, and
+ hit lock; it will then put you in that layer. The corresponding modifier key will then toggle you
+ back to the QWERTY layer. (So for example, if you hit GREEK+LAYER_LOCK and release them, you're
+ now typing in Greek; the GREEK modifier would cause you to type QWERTY momentarily. To go back to
+ ordinary QWERTY mode, you'd just hit LAYER_LOCK again with no modifiers held)
+
+To see the full layout, check out the big comment in keymap.c.
+
+*A less-simple bit: Adapting this to other keyboards*
+
+This is really a canary for generic Cadet implementations. Before this can be made generic, a few
+things will have to happen:
+
+(1) Instead of a fixed keymap, this has to be refactored into some kind of array showing the
+mappings of QWERTY-layer keys onto the appropriate code points in the GREEK and CADET layers, and
+some preprocessor magic needs to auto-transform this plus a traditional keymap for the QWERTY layer
+into keymaps for all five of the core layers. (Function layers would presumably be handled on a
+per-keyboard basis)
+
+(2) The standard mapping of those should have some #define's to control things like whether there
+are physical F-keys (you would probably want to move superscript and subscripts onto the numbers if
+there weren't, and figure out what to do with the non-numeric super/sub keys), whether you actually
+want to enable GREEK+ALT=CADET, and so on;
+
+(3) There should be support for controlling indicator LEDs based on the base layer selection,
+caps/shift lock state, and layer lock state, as well as for triggering audio on transitions;
+
+(4) All the core fancy logic in process_record_user which implements the layer handling should be
+factored out into its own function, so that keyboards can easily reuse that, too.
+
+This is a lovely TODO for future work, and could be particularly fun to go along with new releases
+of SA Symbolics and the like. Anyone interested in such things, ping me!
diff --git a/keyboards/ymdk/melody96/keymaps/zunger/rules.mk b/keyboards/ymdk/melody96/keymaps/zunger/rules.mk
new file mode 100644
index 0000000000..a61cfa33fa
--- /dev/null
+++ b/keyboards/ymdk/melody96/keymaps/zunger/rules.mk
@@ -0,0 +1,2 @@
+# You need Unicode for this map.
+UNICODE_ENABLE = yes # Unicode