summaryrefslogtreecommitdiff
path: root/keyboard/infinity/mbed-infinity
diff options
context:
space:
mode:
authorNathan Ross Powell <nathanrosspowell@gmail.com>2015-03-18 23:33:42 -0400
committerNathan Ross Powell <nathanrosspowell@gmail.com>2015-03-18 23:33:42 -0400
commit80c4cdb245a3ff55627d40a3a164073b30382def (patch)
treee134969a2fc20979101a7e9e7aa06c1877bf82eb /keyboard/infinity/mbed-infinity
parente7289bb029b28b824eb0ef7be23dba279057d7ac (diff)
parent9c3a95663410a294f2c85ad2d1c016f328730e0b (diff)
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'keyboard/infinity/mbed-infinity')
-rw-r--r--keyboard/infinity/mbed-infinity/README39
-rw-r--r--keyboard/infinity/mbed-infinity/USBHAL_KL25Z.cpp557
-rw-r--r--keyboard/infinity/mbed-infinity/cmsis_nvic.c55
-rw-r--r--keyboard/infinity/mbed-infinity/infinity.ld156
-rw-r--r--keyboard/infinity/mbed-infinity/system_MK20D5.c299
5 files changed, 1106 insertions, 0 deletions
diff --git a/keyboard/infinity/mbed-infinity/README b/keyboard/infinity/mbed-infinity/README
new file mode 100644
index 0000000000..b0d226f793
--- /dev/null
+++ b/keyboard/infinity/mbed-infinity/README
@@ -0,0 +1,39 @@
+mbed fix for Infinity
+=====================
+Without linker script patch it doesn't place vector table in final binary.
+And clock is configured to 48MHz using internal clock reference and FLL multiplication.
+
+
+mbed/targets/cmsis/TARGET_Freescale/TARGET_K20D50M/system_MK20D5.c
+ Fix SystemInit: clock setup for internal clock. Inifinity has no external Xtal.
+
+mbed/targets/cmsis/TARGET_Freescale/TARGET_K20D50M/cmsis_nvic.c
+ Fix NVIC vector address of firmware 0x1000 instead of 0x0
+
+mbed/targets/cmsis/TARGET_Freescale/TARGET_K20D50M/TOOLCHAIN_GCC_ARM/MK20D5.ld
+ Fix memory map for Infinity bootloader
+ Flash starts at 0x1000
+ No flash config bytes sector
+
+USBDevice/USBDevice/USBHAL_KL25Z.cpp
+ Fix USB clock setup, see below.
+
+
+2015/01/04 Based on mbed-sdk @2f63fa7d78a26.
+
+
+
+Kinetis USB config
+==================
+Clock source: Internal reference clock wth FLL
+ SIM_SOPT[USBSRC] = 1(MCGPLLCLK/MCGFLLCLK)
+ SIM_SOPT[PLLSEL] = 0(MCGFLLCLK)
+
+Clock dividor:
+ SIM_CLKDIV2[USBDIV] = 0
+ SIM_CLKDIV2[USBFAC] = 0
+
+Clock enable:
+ SIM_SCGC4[USBOTG] = 1
+
+
diff --git a/keyboard/infinity/mbed-infinity/USBHAL_KL25Z.cpp b/keyboard/infinity/mbed-infinity/USBHAL_KL25Z.cpp
new file mode 100644
index 0000000000..90f02fa322
--- /dev/null
+++ b/keyboard/infinity/mbed-infinity/USBHAL_KL25Z.cpp
@@ -0,0 +1,557 @@
+/* Copyright (c) 2010-2011 mbed.org, MIT License
+*
+* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
+* and associated documentation files (the "Software"), to deal in the Software without
+* restriction, including without limitation the rights to use, copy, modify, merge, publish,
+* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
+* Software is furnished to do so, subject to the following conditions:
+*
+* The above copyright notice and this permission notice shall be included in all copies or
+* substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
+* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
+* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*/
+
+#if defined(TARGET_KL25Z) | defined(TARGET_KL43Z) | defined(TARGET_KL46Z) | defined(TARGET_K20D50M) | defined(TARGET_K64F) | defined(TARGET_K22F)
+
+#include "USBHAL.h"
+
+USBHAL * USBHAL::instance;
+
+static volatile int epComplete = 0;
+
+// Convert physical endpoint number to register bit
+#define EP(endpoint) (1<<(endpoint))
+
+// Convert physical to logical
+#define PHY_TO_LOG(endpoint) ((endpoint)>>1)
+
+// Get endpoint direction
+#define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
+#define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
+
+#define BD_OWN_MASK (1<<7)
+#define BD_DATA01_MASK (1<<6)
+#define BD_KEEP_MASK (1<<5)
+#define BD_NINC_MASK (1<<4)
+#define BD_DTS_MASK (1<<3)
+#define BD_STALL_MASK (1<<2)
+
+#define TX 1
+#define RX 0
+#define ODD 0
+#define EVEN 1
+// this macro waits a physical endpoint number
+#define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 * odd)))
+
+#define SETUP_TOKEN 0x0D
+#define IN_TOKEN 0x09
+#define OUT_TOKEN 0x01
+#define TOK_PID(idx) ((bdt[idx].info >> 2) & 0x0F)
+
+// for each endpt: 8 bytes
+typedef struct BDT {
+ uint8_t info; // BD[0:7]
+ uint8_t dummy; // RSVD: BD[8:15]
+ uint16_t byte_count; // BD[16:32]
+ uint32_t address; // Addr
+} BDT;
+
+
+// there are:
+// * 16 bidirectionnal endpt -> 32 physical endpt
+// * as there are ODD and EVEN buffer -> 32*2 bdt
+__attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
+uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2];
+uint8_t * endpoint_buffer_iso[2*2];
+
+static uint8_t set_addr = 0;
+static uint8_t addr = 0;
+
+static uint32_t Data1 = 0x55555555;
+
+static uint32_t frameNumber() {
+ return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF);
+}
+
+uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
+ return 0;
+}
+
+USBHAL::USBHAL(void) {
+ // Disable IRQ
+ NVIC_DisableIRQ(USB0_IRQn);
+
+#if defined(TARGET_K64F)
+ MPU->CESR=0;
+#endif
+ // fill in callback array
+ epCallback[0] = &USBHAL::EP1_OUT_callback;
+ epCallback[1] = &USBHAL::EP1_IN_callback;
+ epCallback[2] = &USBHAL::EP2_OUT_callback;
+ epCallback[3] = &USBHAL::EP2_IN_callback;
+ epCallback[4] = &USBHAL::EP3_OUT_callback;
+ epCallback[5] = &USBHAL::EP3_IN_callback;
+ epCallback[6] = &USBHAL::EP4_OUT_callback;
+ epCallback[7] = &USBHAL::EP4_IN_callback;
+ epCallback[8] = &USBHAL::EP5_OUT_callback;
+ epCallback[9] = &USBHAL::EP5_IN_callback;
+ epCallback[10] = &USBHAL::EP6_OUT_callback;
+ epCallback[11] = &USBHAL::EP6_IN_callback;
+ epCallback[12] = &USBHAL::EP7_OUT_callback;
+ epCallback[13] = &USBHAL::EP7_IN_callback;
+ epCallback[14] = &USBHAL::EP8_OUT_callback;
+ epCallback[15] = &USBHAL::EP8_IN_callback;
+ epCallback[16] = &USBHAL::EP9_OUT_callback;
+ epCallback[17] = &USBHAL::EP9_IN_callback;
+ epCallback[18] = &USBHAL::EP10_OUT_callback;
+ epCallback[19] = &USBHAL::EP10_IN_callback;
+ epCallback[20] = &USBHAL::EP11_OUT_callback;
+ epCallback[21] = &USBHAL::EP11_IN_callback;
+ epCallback[22] = &USBHAL::EP12_OUT_callback;
+ epCallback[23] = &USBHAL::EP12_IN_callback;
+ epCallback[24] = &USBHAL::EP13_OUT_callback;
+ epCallback[25] = &USBHAL::EP13_IN_callback;
+ epCallback[26] = &USBHAL::EP14_OUT_callback;
+ epCallback[27] = &USBHAL::EP14_IN_callback;
+ epCallback[28] = &USBHAL::EP15_OUT_callback;
+ epCallback[29] = &USBHAL::EP15_IN_callback;
+
+#if defined(TARGET_KL43Z)
+ // enable USBFS clock
+ SIM->SCGC4 |= SIM_SCGC4_USBFS_MASK;
+
+ // enable the IRC48M clock
+ USB0->CLK_RECOVER_IRC_EN |= USB_CLK_RECOVER_IRC_EN_IRC_EN_MASK;
+
+ // enable the USB clock recovery tuning
+ USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK;
+
+ // choose usb src clock
+ SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
+#elif defined(TARGET_INFINITY)
+ // USB clock source: FLL
+ SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
+
+ // enable OTG clock
+ SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
+#else
+ // choose usb src as PLL
+ SIM->SOPT2 &= ~SIM_SOPT2_PLLFLLSEL_MASK;
+ SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | (1 << SIM_SOPT2_PLLFLLSEL_SHIFT));
+
+ // enable OTG clock
+ SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
+#endif
+
+ // Attach IRQ
+ instance = this;
+ NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
+ NVIC_EnableIRQ(USB0_IRQn);
+
+ // USB Module Configuration
+ // Reset USB Module
+ USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
+ while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
+
+ // Set BDT Base Register
+ USB0->BDTPAGE1 = (uint8_t)((uint32_t)bdt>>8);
+ USB0->BDTPAGE2 = (uint8_t)((uint32_t)bdt>>16);
+ USB0->BDTPAGE3 = (uint8_t)((uint32_t)bdt>>24);
+
+ // Clear interrupt flag
+ USB0->ISTAT = 0xff;
+
+ // USB Interrupt Enablers
+ USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK |
+ USB_INTEN_SOFTOKEN_MASK |
+ USB_INTEN_ERROREN_MASK |
+ USB_INTEN_USBRSTEN_MASK;
+
+ // Disable weak pull downs
+ USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);
+
+ USB0->USBTRC0 |= 0x40;
+}
+
+USBHAL::~USBHAL(void) { }
+
+void USBHAL::connect(void) {
+ // enable USB
+ USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
+ // Pull up enable
+ USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
+}
+
+void USBHAL::disconnect(void) {
+ // disable USB
+ USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
+ // Pull up disable
+ USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
+
+ //Free buffers if required:
+ for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) {
+ free(endpoint_buffer[i]);
+ endpoint_buffer[i] = NULL;
+ }
+ free(endpoint_buffer_iso[2]);
+ endpoint_buffer_iso[2] = NULL;
+ free(endpoint_buffer_iso[0]);
+ endpoint_buffer_iso[0] = NULL;
+}
+
+void USBHAL::configureDevice(void) {
+ // not needed
+}
+
+void USBHAL::unconfigureDevice(void) {
+ // not needed
+}
+
+void USBHAL::setAddress(uint8_t address) {
+ // we don't set the address now otherwise the usb controller does not ack
+ // we set a flag instead
+ // see usbisr when an IN token is received
+ set_addr = 1;
+ addr = address;
+}
+
+bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
+ uint32_t handshake_flag = 0;
+ uint8_t * buf;
+
+ if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
+ return false;
+ }
+
+ uint32_t log_endpoint = PHY_TO_LOG(endpoint);
+
+ if ((flags & ISOCHRONOUS) == 0) {
+ handshake_flag = USB_ENDPT_EPHSHK_MASK;
+ if (IN_EP(endpoint)) {
+ if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL)
+ endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64*2);
+ buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0];
+ } else {
+ if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL)
+ endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64*2);
+ buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0];
+ }
+ } else {
+ if (IN_EP(endpoint)) {
+ if (endpoint_buffer_iso[2] == NULL)
+ endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2);
+ buf = &endpoint_buffer_iso[2][0];
+ } else {
+ if (endpoint_buffer_iso[0] == NULL)
+ endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2);
+ buf = &endpoint_buffer_iso[0][0];
+ }
+ }
+
+ // IN endpt -> device to host (TX)
+ if (IN_EP(endpoint)) {
+ USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint)
+ USB_ENDPT_EPTXEN_MASK; // en TX (IN) tran
+ bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
+ bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
+ }
+ // OUT endpt -> host to device (RX)
+ else {
+ USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint)
+ USB_ENDPT_EPRXEN_MASK; // en RX (OUT) tran.
+ bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
+ bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address = (uint32_t) buf;
+ bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info = BD_OWN_MASK | BD_DTS_MASK;
+ bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info = 0;
+ }
+
+ Data1 |= (1 << endpoint);
+
+ return true;
+}
+
+// read setup packet
+void USBHAL::EP0setup(uint8_t *buffer) {
+ uint32_t sz;
+ endpointReadResult(EP0OUT, buffer, &sz);
+}
+
+void USBHAL::EP0readStage(void) {
+ Data1 &= ~1UL; // set DATA0
+ bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
+}
+
+void USBHAL::EP0read(void) {
+ uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
+ bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
+}
+
+uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
+ uint32_t sz;
+ endpointReadResult(EP0OUT, buffer, &sz);
+ return sz;
+}
+
+void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
+ endpointWrite(EP0IN, buffer, size);
+}
+
+void USBHAL::EP0getWriteResult(void) {
+}
+
+void USBHAL::EP0stall(void) {
+ stallEndpoint(EP0OUT);
+}
+
+EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
+ endpoint = PHY_TO_LOG(endpoint);
+ uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
+ bdt[idx].byte_count = maximumSize;
+ return EP_PENDING;
+}
+
+EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
+ uint32_t n, sz, idx, setup = 0;
+ uint8_t not_iso;
+ uint8_t * ep_buf;
+
+ uint32_t log_endpoint = PHY_TO_LOG(endpoint);
+
+ if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
+ return EP_INVALID;
+ }
+
+ // if read on a IN endpoint -> error
+ if (IN_EP(endpoint)) {
+ return EP_INVALID;
+ }
+
+ idx = EP_BDT_IDX(log_endpoint, RX, 0);
+ sz = bdt[idx].byte_count;
+ not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
+
+ //for isochronous endpoint, we don't wait an interrupt
+ if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
+ return EP_PENDING;
+ }
+
+ if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
+ setup = 1;
+ }
+
+ // non iso endpoint
+ if (not_iso) {
+ ep_buf = endpoint_buffer[idx];
+ } else {
+ ep_buf = endpoint_buffer_iso[0];
+ }
+
+ for (n = 0; n < sz; n++) {
+ buffer[n] = ep_buf[n];
+ }
+
+ if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
+ if (setup && (buffer[6] == 0)) // if no setup data stage,
+ Data1 &= ~1UL; // set DATA0
+ else
+ Data1 ^= (1 << endpoint);
+ }
+
+ if (((Data1 >> endpoint) & 1)) {
+ bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
+ }
+ else {
+ bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
+ }
+
+ USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
+ *bytesRead = sz;
+
+ epComplete &= ~EP(endpoint);
+ return EP_COMPLETED;
+}
+
+EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
+ uint32_t idx, n;
+ uint8_t * ep_buf;
+
+ if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
+ return EP_INVALID;
+ }
+
+ // if write on a OUT endpoint -> error
+ if (OUT_EP(endpoint)) {
+ return EP_INVALID;
+ }
+
+ idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
+ bdt[idx].byte_count = size;
+
+
+ // non iso endpoint
+ if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
+ ep_buf = endpoint_buffer[idx];
+ } else {
+ ep_buf = endpoint_buffer_iso[2];
+ }
+
+ for (n = 0; n < size; n++) {
+ ep_buf[n] = data[n];
+ }
+
+ if ((Data1 >> endpoint) & 1) {
+ bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
+ } else {
+ bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
+ }
+
+ Data1 ^= (1 << endpoint);
+
+ return EP_PENDING;
+}
+
+EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
+ if (epComplete & EP(endpoint)) {
+ epComplete &= ~EP(endpoint);
+ return EP_COMPLETED;
+ }
+
+ return EP_PENDING;
+}
+
+void USBHAL::stallEndpoint(uint8_t endpoint) {
+ USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
+}
+
+void USBHAL::unstallEndpoint(uint8_t endpoint) {
+ USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
+}
+
+bool USBHAL::getEndpointStallState(uint8_t endpoint) {
+ uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
+ return (stall) ? true : false;
+}
+
+void USBHAL::remoteWakeup(void) {
+ // [TODO]
+}
+
+
+void USBHAL::_usbisr(void) {
+ instance->usbisr();
+}
+
+
+void USBHAL::usbisr(void) {
+ uint8_t i;
+ uint8_t istat = USB0->ISTAT;
+
+ // reset interrupt
+ if (istat & USB_ISTAT_USBRST_MASK) {
+ // disable all endpt
+ for(i = 0; i < 16; i++) {
+ USB0->ENDPOINT[i].ENDPT = 0x00;
+ }
+
+ // enable control endpoint
+ realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
+ realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
+
+ Data1 = 0x55555555;
+ USB0->CTL |= USB_CTL_ODDRST_MASK;
+
+ USB0->ISTAT = 0xFF; // clear all interrupt status flags
+ USB0->ERRSTAT = 0xFF; // clear all error flags
+ USB0->ERREN = 0xFF; // enable error interrupt sources
+ USB0->ADDR = 0x00; // set default address
+
+ return;
+ }
+
+ // resume interrupt
+ if (istat & USB_ISTAT_RESUME_MASK) {
+ USB0->ISTAT = USB_ISTAT_RESUME_MASK;
+ }
+
+ // SOF interrupt
+ if (istat & USB_ISTAT_SOFTOK_MASK) {
+ USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;
+ // SOF event, read frame number
+ SOF(frameNumber());
+ }
+
+ // stall interrupt
+ if (istat & 1<<7) {
+ if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
+ USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
+ USB0->ISTAT |= USB_ISTAT_STALL_MASK;
+ }
+
+ // token interrupt
+ if (istat & 1<<3) {
+ uint32_t num = (USB0->STAT >> 4) & 0x0F;
+ uint32_t dir = (USB0->STAT >> 3) & 0x01;
+ uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
+
+ // setup packet
+ if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
+ Data1 &= ~0x02;
+ bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
+ bdt[EP_BDT_IDX(0, TX, ODD)].info &= ~BD_OWN_MASK;
+
+ // EP0 SETUP event (SETUP data received)
+ EP0setupCallback();
+
+ } else {
+ // OUT packet
+ if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
+ if (num == 0)
+ EP0out();
+ else {
+ epComplete |= (1 << EP(num));
+ if ((instance->*(epCallback[EP(num) - 2]))()) {
+ epComplete &= ~(1 << EP(num));
+ }
+ }
+ }
+
+ // IN packet
+ if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
+ if (num == 0) {
+ EP0in();
+ if (set_addr == 1) {
+ USB0->ADDR = addr & 0x7F;
+ set_addr = 0;
+ }
+ }
+ else {
+ epComplete |= (1 << (EP(num) + 1));
+ if ((instance->*(epCallback[EP(num) + 1 - 2]))()) {
+ epComplete &= ~(1 << (EP(num) + 1));
+ }
+ }
+ }
+ }
+
+ USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
+ }
+
+ // sleep interrupt
+ if (istat & 1<<4) {
+ USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
+ }
+
+ // error interrupt
+ if (istat & USB_ISTAT_ERROR_MASK) {
+ USB0->ERRSTAT = 0xFF;
+ USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
+ }
+}
+
+
+#endif
diff --git a/keyboard/infinity/mbed-infinity/cmsis_nvic.c b/keyboard/infinity/mbed-infinity/cmsis_nvic.c
new file mode 100644
index 0000000000..985c1d33f5
--- /dev/null
+++ b/keyboard/infinity/mbed-infinity/cmsis_nvic.c
@@ -0,0 +1,55 @@
+/* mbed Microcontroller Library
+ * CMSIS-style functionality to support dynamic vectors
+ *******************************************************************************
+ * Copyright (c) 2011 ARM Limited. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of ARM Limited nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *******************************************************************************
+ */
+#include "cmsis_nvic.h"
+
+#define NVIC_RAM_VECTOR_ADDRESS (0x1FFFE000) // Vectors positioned at start of RAM
+#define NVIC_FLASH_VECTOR_ADDRESS (0x1000) // Initial vector position in flash
+
+void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
+ uint32_t *vectors = (uint32_t*)SCB->VTOR;
+ uint32_t i;
+
+ // Copy and switch to dynamic vectors if the first time called
+ if (SCB->VTOR == NVIC_FLASH_VECTOR_ADDRESS) {
+ uint32_t *old_vectors = vectors;
+ vectors = (uint32_t*)NVIC_RAM_VECTOR_ADDRESS;
+ for (i=0; i<NVIC_NUM_VECTORS; i++) {
+ vectors[i] = old_vectors[i];
+ }
+ SCB->VTOR = (uint32_t)NVIC_RAM_VECTOR_ADDRESS;
+ }
+ vectors[IRQn + 16] = vector;
+}
+
+uint32_t NVIC_GetVector(IRQn_Type IRQn) {
+ uint32_t *vectors = (uint32_t*)SCB->VTOR;
+ return vectors[IRQn + 16];
+}
diff --git a/keyboard/infinity/mbed-infinity/infinity.ld b/keyboard/infinity/mbed-infinity/infinity.ld
new file mode 100644
index 0000000000..decdaa26e0
--- /dev/null
+++ b/keyboard/infinity/mbed-infinity/infinity.ld
@@ -0,0 +1,156 @@
+/*
+ * Linker script for Massdrop Infinity
+ * Infinity has bootloader in top 4KB sector of flash and app should be placed after the area.
+ *
+ * based on mbed.org K20 ARM GCC linker script file: MK20D5.ld
+ */
+
+MEMORY
+{
+ /* Infinity blootloader uses 4KB */
+ FLASH (rx) : ORIGIN = 4K, LENGTH = 128K - 4K
+ RAM (rwx) : ORIGIN = 0x1FFFE0F8, LENGTH = 16K - 0xF8
+}
+
+/* Linker script to place sections and symbol values. Should be used together
+ * with other linker script that defines memory regions FLASH and RAM.
+ * It references following symbols, which must be defined in code:
+ * _reset_init : Entry of reset handler
+ *
+ * It defines following symbols, which code can use without definition:
+ * __exidx_start
+ * __exidx_end
+ * __etext
+ * __data_start__
+ * __preinit_array_start
+ * __preinit_array_end
+ * __init_array_start
+ * __init_array_end
+ * __fini_array_start
+ * __fini_array_end
+ * __data_end__
+ * __bss_start__
+ * __bss_end__
+ * __end__
+ * end
+ * __HeapLimit
+ * __StackLimit
+ * __StackTop
+ * __stack
+ */
+ENTRY(Reset_Handler)
+
+SECTIONS
+{
+ .text :
+ {
+ __vector_table = .;
+ KEEP(*(.isr_vector))
+ *(.text.Reset_Handler)
+ *(.text.System_Init)
+ . = ALIGN(4);
+
+ *(.text*)
+
+ KEEP(*(.init))
+ KEEP(*(.fini))
+
+ /* .ctors */
+ *crtbegin.o(.ctors)
+ *crtbegin?.o(.ctors)
+ *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
+ *(SORT(.ctors.*))
+ *(.ctors)
+
+ /* .dtors */
+ *crtbegin.o(.dtors)
+ *crtbegin?.o(.dtors)
+ *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
+ *(SORT(.dtors.*))
+ *(.dtors)
+
+ *(.rodata*)
+
+ KEEP(*(.eh_frame*))
+ } > FLASH
+
+ .ARM.extab :
+ {
+ *(.ARM.extab* .gnu.linkonce.armextab.*)
+ } > FLASH
+
+ __exidx_start = .;
+ .ARM.exidx :
+ {
+ *(.ARM.exidx* .gnu.linkonce.armexidx.*)
+ } > FLASH
+ __exidx_end = .;
+
+ __etext = .;
+
+ .data : AT (__etext)
+ {
+ __data_start__ = .;
+ *(vtable)
+ *(.data*)
+
+ . = ALIGN(4);
+ /* preinit data */
+ PROVIDE_HIDDEN (__preinit_array_start = .);
+ KEEP(*(.preinit_array))
+ PROVIDE_HIDDEN (__preinit_array_end = .);
+
+ . = ALIGN(4);
+ /* init data */
+ PROVIDE_HIDDEN (__init_array_start = .);
+ KEEP(*(SORT(.init_array.*)))
+ KEEP(*(.init_array))
+ PROVIDE_HIDDEN (__init_array_end = .);
+
+
+ . = ALIGN(4);
+ /* finit data */
+ PROVIDE_HIDDEN (__fini_array_start = .);
+ KEEP(*(SORT(.fini_array.*)))
+ KEEP(*(.fini_array))
+ PROVIDE_HIDDEN (__fini_array_end = .);
+
+ . = ALIGN(4);
+ /* All data end */
+ __data_end__ = .;
+
+ } > RAM
+
+ .bss :
+ {
+ __bss_start__ = .;
+ *(.bss*)
+ *(COMMON)
+ __bss_end__ = .;
+ } > RAM
+
+ .heap :
+ {
+ __end__ = .;
+ end = __end__;
+ *(.heap*)
+ __HeapLimit = .;
+ } > RAM
+
+ /* .stack_dummy section doesn't contains any symbols. It is only
+ * used for linker to calculate size of stack sections, and assign
+ * values to stack symbols later */
+ .stack_dummy :
+ {
+ *(.stack)
+ } > RAM
+
+ /* Set stack top to end of RAM, and stack limit move down by
+ * size of stack_dummy section */
+ __StackTop = ORIGIN(RAM) + LENGTH(RAM);
+ __StackLimit = __StackTop - SIZEOF(.stack_dummy);
+ PROVIDE(__stack = __StackTop);
+
+ /* Check if data + heap + stack exceeds RAM limit */
+ ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed with stack")
+}
diff --git a/keyboard/infinity/mbed-infinity/system_MK20D5.c b/keyboard/infinity/mbed-infinity/system_MK20D5.c
new file mode 100644
index 0000000000..4f4e2a2624
--- /dev/null
+++ b/keyboard/infinity/mbed-infinity/system_MK20D5.c
@@ -0,0 +1,299 @@
+/*
+** ###################################################################
+** Compilers: ARM Compiler
+** Freescale C/C++ for Embedded ARM
+** GNU C Compiler
+** IAR ANSI C/C++ Compiler for ARM
+**
+** Reference manuals: K20P64M50SF0RM Rev. 1, Oct 2011
+** K20P32M50SF0RM Rev. 1, Oct 2011
+** K20P48M50SF0RM Rev. 1, Oct 2011
+**
+** Version: rev. 1.0, 2011-12-15
+**
+** Abstract:
+** Provides a system configuration function and a global variable that
+** contains the system frequency. It configures the device and initializes
+** the oscillator (PLL) that is part of the microcontroller device.
+**
+** Copyright: 2011 Freescale Semiconductor, Inc. All Rights Reserved.
+**
+** http: www.freescale.com
+** mail: support@freescale.com
+**
+** Revisions:
+** - rev. 1.0 (2011-12-15)
+** Initial version
+**
+** ###################################################################
+*/
+
+/**
+ * @file MK20D5
+ * @version 1.0
+ * @date 2011-12-15
+ * @brief Device specific configuration file for MK20D5 (implementation file)
+ *
+ * Provides a system configuration function and a global variable that contains
+ * the system frequency. It configures the device and initializes the oscillator
+ * (PLL) that is part of the microcontroller device.
+ */
+
+#include <stdint.h>
+#include "MK20D5.h"
+
+#define DISABLE_WDOG 1
+
+#define CLOCK_SETUP 3
+/* Predefined clock setups
+ 0 ... Multipurpose Clock Generator (MCG) in FLL Engaged Internal (FEI) mode
+ Reference clock source for MCG module is the slow internal clock source 32.768kHz
+ Core clock = 41.94MHz, BusClock = 41.94MHz
+ 1 ... Multipurpose Clock Generator (MCG) in PLL Engaged External (PEE) mode
+ Reference clock source for MCG module is an external crystal 8MHz
+ Core clock = 48MHz, BusClock = 48MHz
+ 2 ... Multipurpose Clock Generator (MCG) in Bypassed Low Power External (BLPE) mode
+ Core clock/Bus clock derived directly from an external crystal 8MHz with no multiplication
+ Core clock = 8MHz, BusClock = 8MHz
+*/
+
+/*----------------------------------------------------------------------------
+ Define clock source values
+ *----------------------------------------------------------------------------*/
+#if (CLOCK_SETUP == 0)
+ #define CPU_XTAL_CLK_HZ 8000000u /* Value of the external crystal or oscillator clock frequency in Hz */
+ #define CPU_XTAL32k_CLK_HZ 32768u /* Value of the external 32k crystal or oscillator clock frequency in Hz */
+ #define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
+ #define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
+ #define DEFAULT_SYSTEM_CLOCK 41943040u /* Default System clock value */
+#elif (CLOCK_SETUP == 1)
+ #define CPU_XTAL_CLK_HZ 8000000u /* Value of the external crystal or oscillator clock frequency in Hz */
+ #define CPU_XTAL32k_CLK_HZ 32768u /* Value of the external 32k crystal or oscillator clock frequency in Hz */
+ #define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
+ #define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
+ #define DEFAULT_SYSTEM_CLOCK 48000000u /* Default System clock value */
+#elif (CLOCK_SETUP == 2)
+ #define CPU_XTAL_CLK_HZ 8000000u /* Value of the external crystal or oscillator clock frequency in Hz */
+ #define CPU_XTAL32k_CLK_HZ 32768u /* Value of the external 32k crystal or oscillator clock frequency in Hz */
+ #define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
+ #define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
+ #define DEFAULT_SYSTEM_CLOCK 8000000u /* Default System clock value */
+#elif (CLOCK_SETUP == 3)
+ /* for Infinity */
+ #define CPU_XTAL_CLK_HZ 8000000u
+ #define CPU_XTAL32k_CLK_HZ 32768u
+ #define CPU_INT_SLOW_CLK_HZ 32768u
+ #define CPU_INT_FAST_CLK_HZ 4000000u
+ #define DEFAULT_SYSTEM_CLOCK 48000000u
+#endif
+
+
+/* ----------------------------------------------------------------------------
+ -- Core clock
+ ---------------------------------------------------------------------------- */
+
+uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK;
+
+/* ----------------------------------------------------------------------------
+ -- SystemInit()
+ ---------------------------------------------------------------------------- */
+
+void SystemInit (void) {
+#if (DISABLE_WDOG)
+ /* Disable the WDOG module */
+ /* WDOG_UNLOCK: WDOGUNLOCK=0xC520 */
+ WDOG->UNLOCK = (uint16_t)0xC520u; /* Key 1 */
+ /* WDOG_UNLOCK : WDOGUNLOCK=0xD928 */
+ WDOG->UNLOCK = (uint16_t)0xD928u; /* Key 2 */
+ /* WDOG_STCTRLH: ??=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,??=0,STNDBYEN=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
+ WDOG->STCTRLH = (uint16_t)0x01D2u;
+#endif /* (DISABLE_WDOG) */
+#if (CLOCK_SETUP == 0)
+ /* SIM->CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
+ SIM->CLKDIV1 = (uint32_t)0x00110000u; /* Update system prescalers */
+ /* Switch to FEI Mode */
+ /* MCG->C1: CLKS=0,FRDIV=0,IREFS=1,IRCLKEN=1,IREFSTEN=0 */
+ MCG->C1 = (uint8_t)0x06u;
+ /* MCG->C2: ??=0,??=0,RANGE0=0,HGO=0,EREFS=0,LP=0,IRCS=0 */
+ MCG->C2 = (uint8_t)0x00u;
+ /* MCG_C4: DMX32=0,DRST_DRS=1 */
+ MCG->C4 = (uint8_t)((MCG->C4 & (uint8_t)~(uint8_t)0xC0u) | (uint8_t)0x20u);
+ /* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV0=0 */
+ MCG->C5 = (uint8_t)0x00u;
+ /* MCG->C6: LOLIE=0,PLLS=0,CME=0,VDIV0=0 */
+ MCG->C6 = (uint8_t)0x00u;
+ while((MCG->S & MCG_S_IREFST_MASK) == 0u) { /* Check that the source of the FLL reference clock is the internal reference clock. */
+ }
+ while((MCG->S & 0x0Cu) != 0x00u) { /* Wait until output of the FLL is selected */
+ }
+#elif (CLOCK_SETUP == 1)
+ /* SIM->CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
+ SIM->CLKDIV1 = (uint32_t)0x00110000u; /* Update system prescalers */
+ /* Switch to FBE Mode */
+ /* OSC0->CR: ERCLKEN=0,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
+ OSC0->CR = (uint8_t)0x00u;
+ /* MCG->C7: OSCSEL=0 */
+ MCG->C7 = (uint8_t)0x00u;
+ /* MCG->C2: ??=0,??=0,RANGE0=2,HGO=0,EREFS=1,LP=0,IRCS=0 */
+ MCG->C2 = (uint8_t)0x24u;
+ /* MCG->C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
+ MCG->C1 = (uint8_t)0x9Au;
+ /* MCG->C4: DMX32=0,DRST_DRS=0 */
+ MCG->C4 &= (uint8_t)~(uint8_t)0xE0u;
+ /* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV0=3 */
+ MCG->C5 = (uint8_t)0x03u;
+ /* MCG->C6: LOLIE=0,PLLS=0,CME=0,VDIV0=0 */
+ MCG->C6 = (uint8_t)0x00u;
+ while((MCG->S & MCG_S_OSCINIT0_MASK) == 0u) { /* Check that the oscillator is running */
+ }
+#if 0 /* ARM: THIS CHECK IS REMOVED DUE TO BUG WITH SLOW IRC IN REV. 1.0 */
+ while((MCG->S & MCG_S_IREFST_MASK) != 0u) { /* Check that the source of the FLL reference clock is the external reference clock. */
+ }
+#endif
+ while((MCG->S & 0x0Cu) != 0x08u) { /* Wait until external reference clock is selected as MCG output */
+ }
+ /* Switch to PBE Mode */
+ /* MCG_C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV0=3 */
+ MCG->C5 = (uint8_t)0x03u;
+ /* MCG->C6: LOLIE=0,PLLS=1,CME=0,VDIV0=0 */
+ MCG->C6 = (uint8_t)0x40u;
+ while((MCG->S & MCG_S_PLLST_MASK) == 0u) { /* Wait until the source of the PLLS clock has switched to the PLL */
+ }
+ while((MCG->S & MCG_S_LOCK0_MASK) == 0u) { /* Wait until locked */
+ }
+ /* Switch to PEE Mode */
+ /* MCG->C1: CLKS=0,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
+ MCG->C1 = (uint8_t)0x1Au;
+ while((MCG->S & 0x0Cu) != 0x0Cu) { /* Wait until output of the PLL is selected */
+ }
+ while((MCG->S & MCG_S_LOCK0_MASK) == 0u) { /* Wait until locked */
+ }
+#elif (CLOCK_SETUP == 2)
+ /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
+ SIM->CLKDIV1 = (uint32_t)0x00110000u; /* Update system prescalers */
+ /* Switch to FBE Mode */
+ /* OSC0->CR: ERCLKEN=0,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
+ OSC0->CR = (uint8_t)0x00u;
+ /* MCG->C7: OSCSEL=0 */
+ MCG->C7 = (uint8_t)0x00u;
+ /* MCG->C2: ??=0,??=0,RANGE0=2,HGO=0,EREFS=1,LP=0,IRCS=0 */
+ MCG->C2 = (uint8_t)0x24u;
+ /* MCG->C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
+ MCG->C1 = (uint8_t)0x9Au;
+ /* MCG->C4: DMX32=0,DRST_DRS=0 */
+ MCG->C4 &= (uint8_t)~(uint8_t)0xE0u;
+ /* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV0=0 */
+ MCG->C5 = (uint8_t)0x00u;
+ /* MCG->C6: LOLIE=0,PLLS=0,CME=0,VDIV0=0 */
+ MCG->C6 = (uint8_t)0x00u;
+ while((MCG->S & MCG_S_OSCINIT0_MASK) == 0u) { /* Check that the oscillator is running */
+ }
+#if 0 /* ARM: THIS CHECK IS REMOVED DUE TO BUG WITH SLOW IRC IN REV. 1.0 */
+ while((MCG->S & MCG_S_IREFST_MASK) != 0u) { /* Check that the source of the FLL reference clock is the external reference clock. */
+ }
+#endif
+ while((MCG->S & 0x0CU) != 0x08u) { /* Wait until external reference clock is selected as MCG output */
+ }
+ /* Switch to BLPE Mode */
+ /* MCG->C2: ??=0,??=0,RANGE0=2,HGO=0,EREFS=1,LP=0,IRCS=0 */
+ MCG->C2 = (uint8_t)0x24u;
+
+#elif (CLOCK_SETUP == 3)
+ /* for Infinity FEI: 48MHz */
+
+ /* OUTDIV1(core/system): 48/1, OUTDIV2(bus): 48/1, OUTDIV4(flash): 48/2 */
+ SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(1);
+ MCG->C1 = MCG_C1_IREFS_MASK | MCG_C1_IRCLKEN_MASK;
+ /* 32.768KHz x FLL(1464) = 48MHz */
+ MCG->C4 = MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(1);
+ /* USB clock source: MCGPLLCLK/MCGFLLCLK */
+ //SIM->SOPT2 = SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_TRACECLKSEL_MASK;
+
+ while((MCG->S & MCG_S_IREFST_MASK) == 0u) { }
+ while((MCG->S & 0x0Cu) != 0x00u) { }
+#endif
+}
+
+/* ----------------------------------------------------------------------------
+ -- SystemCoreClockUpdate()
+ ---------------------------------------------------------------------------- */
+
+void SystemCoreClockUpdate (void) {
+ uint32_t MCGOUTClock; /* Variable to store output clock frequency of the MCG module */
+ uint8_t Divider;
+
+ if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x0u) {
+ /* Output of FLL or PLL is selected */
+ if ((MCG->C6 & MCG_C6_PLLS_MASK) == 0x0u) {
+ /* FLL is selected */
+ if ((MCG->C1 & MCG_C1_IREFS_MASK) == 0x0u) {
+ /* External reference clock is selected */
+ if ((MCG->C7 & MCG_C7_OSCSEL_MASK) == 0x0u) {
+ MCGOUTClock = CPU_XTAL_CLK_HZ; /* System oscillator drives MCG clock */
+ } else { /* (!((MCG->C7 & MCG_C7_OSCSEL_MASK) == 0x0u)) */
+ MCGOUTClock = CPU_XTAL32k_CLK_HZ; /* RTC 32 kHz oscillator drives MCG clock */
+ } /* (!((MCG->C7 & MCG_C7_OSCSEL_MASK) == 0x0u)) */
+ Divider = (uint8_t)(1u << ((MCG->C1 & MCG_C1_FRDIV_MASK) >> MCG_C1_FRDIV_SHIFT));
+ MCGOUTClock = (MCGOUTClock / Divider); /* Calculate the divided FLL reference clock */
+ if ((MCG->C2 & MCG_C2_RANGE0_MASK) != 0x0u) {
+ MCGOUTClock /= 32u; /* If high range is enabled, additional 32 divider is active */
+ } /* ((MCG->C2 & MCG_C2_RANGE0_MASK) != 0x0u) */
+ } else { /* (!((MCG->C1 & MCG_C1_IREFS_MASK) == 0x0u)) */
+ MCGOUTClock = CPU_INT_SLOW_CLK_HZ; /* The slow internal reference clock is selected */
+ } /* (!((MCG->C1 & MCG_C1_IREFS_MASK) == 0x0u)) */
+ /* Select correct multiplier to calculate the MCG output clock */
+ switch (MCG->C4 & (MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) {
+ case 0x0u:
+ MCGOUTClock *= 640u;
+ break;
+ case 0x20u:
+ MCGOUTClock *= 1280u;
+ break;
+ case 0x40u:
+ MCGOUTClock *= 1920u;
+ break;
+ case 0x60u:
+ MCGOUTClock *= 2560u;
+ break;
+ case 0x80u:
+ MCGOUTClock *= 732u;
+ break;
+ case 0xA0u:
+ MCGOUTClock *= 1464u;
+ break;
+ case 0xC0u:
+ MCGOUTClock *= 2197u;
+ break;
+ case 0xE0u:
+ MCGOUTClock *= 2929u;
+ break;
+ default:
+ break;
+ }
+ } else { /* (!((MCG->C6 & MCG_C6_PLLS_MASK) == 0x0u)) */
+ /* PLL is selected */
+ Divider = (1u + (MCG->C5 & MCG_C5_PRDIV0_MASK));
+ MCGOUTClock = (uint32_t)(CPU_XTAL_CLK_HZ / Divider); /* Calculate the PLL reference clock */
+ Divider = ((MCG->C6 & MCG_C6_VDIV0_MASK) + 24u);
+ MCGOUTClock *= Divider; /* Calculate the MCG output clock */
+ } /* (!((MCG->C6 & MCG_C6_PLLS_MASK) == 0x0u)) */
+ } else if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x40u) {
+ /* Internal reference clock is selected */
+ if ((MCG->C2 & MCG_C2_IRCS_MASK) == 0x0u) {
+ MCGOUTClock = CPU_INT_SLOW_CLK_HZ; /* Slow internal reference clock selected */
+ } else { /* (!((MCG->C2 & MCG_C2_IRCS_MASK) == 0x0u)) */
+ MCGOUTClock = CPU_INT_FAST_CLK_HZ / (1 << ((MCG->SC & MCG_SC_FCRDIV_MASK) >> MCG_SC_FCRDIV_SHIFT)); /* Fast internal reference clock selected */
+ } /* (!((MCG->C2 & MCG_C2_IRCS_MASK) == 0x0u)) */
+ } else if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80u) {
+ /* External reference clock is selected */
+ if ((MCG->C7 & MCG_C7_OSCSEL_MASK) == 0x0u) {
+ MCGOUTClock = CPU_XTAL_CLK_HZ; /* System oscillator drives MCG clock */
+ } else { /* (!((MCG->C7 & MCG_C7_OSCSEL_MASK) == 0x0u)) */
+ MCGOUTClock = CPU_XTAL32k_CLK_HZ; /* RTC 32 kHz oscillator drives MCG clock */
+ } /* (!((MCG->C7 & MCG_C7_OSCSEL_MASK) == 0x0u)) */
+ } else { /* (!((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80u)) */
+ /* Reserved value */
+ return;
+ } /* (!((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80u)) */
+ SystemCoreClock = (MCGOUTClock / (1u + ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> SIM_CLKDIV1_OUTDIV1_SHIFT)));
+}