diff options
author | Jack Humbert <jack.humb@gmail.com> | 2017-06-10 15:11:02 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-06-10 15:11:02 -0400 |
commit | 401aab7d5af417a2bcfaa6450ece0a1c48788d83 (patch) | |
tree | ca892ce50bf2c5373e65c99497b93b9d737e9a2f | |
parent | 5e9d5a0a75bf468ea9c9c73639e9fcb1c7109704 (diff) |
Delete CYGWIN_GUIDE.md
-rw-r--r-- | docs/CYGWIN_GUIDE.md | 352 |
1 files changed, 0 insertions, 352 deletions
diff --git a/docs/CYGWIN_GUIDE.md b/docs/CYGWIN_GUIDE.md deleted file mode 100644 index 05d71961a4..0000000000 --- a/docs/CYGWIN_GUIDE.md +++ /dev/null @@ -1,352 +0,0 @@ -#Planck Advanced (but not too advanced) `cygwin` Users Guide -If you are a user of the [cygwin environment](https://cygwin.com) in Windows and want the freedom to use the latest tools available, then this is the guide for you. If compiling your own copy of the latest and greatest Gnu C Compiler makes you super happy, then this is the guide for you. If the command line make you smile, then this is the guide for you. - -This guide was written step by step as I went through the process on a `Windows 10` `x86_64` and a `Windows 7` `amd k10` based system. This should be generally applicable to to any `Windows` environment with `cygwin`. - -#####Do not skip steps. Do not move past a step until the previous step finishes successfully. - -Based on [avr-libc installation guide](http://www.nongnu.org/avr-libc/user-manual/install_tools.html) - -##Get the Required Packages -Download the `cygwin` setup ([x86_64](https://cygwin.com/setup-x86_64.exe)) and install the default system plus the following if they are not already selected: -- devel/git -- devel/gcc-core -- devel/gcc-g++ -- devel/flex -- devel/bison -- devel/make -- devel/texinfo -- devel/gettext-devel -- devel/automake -- devel/autoconfig -- devel/libtool -- text/gettext -- libs/libgcc1 -- interpreters/m4 -- web/wget -- archive/unzip - -The following sources will be required: -- [gmp](https://gmplib.org/) (6.1.0) -- [mpfr](http://www.mpfr.org/) (3.1.4) -- [mpc](http://www.multiprecision.org/) (1.0.3) -- [binutils](https://www.sourceware.org/binutils/) (2.26) -- [gcc](https://gcc.gnu.org/) (5.3.0) -- [avr-libc](http://www.nongnu.org/avr-libc/) (2.0.0) - -The `dfu-programmer` will be required to flash the new firmware -- [dfu-programmer](https://dfu-programmer.github.io/) (0.7.2) - -The set of commands below will create a directory (`~/local/avr`) for the sources you compile to be installed on the machine and a directory (`~/src`) for these source files to be stored. The commands then download the sources of the needed packages and unpack them. Note: the expand commands are different depending on if the packages are offered as a `bz2` or `gz` archive -``` -$ mkdir ~/local -$ mkdir ~/local/avr -$ mkdir ~/src -$ cd ~/src -$ wget https://gmplib.org/download/gmp/gmp-6.1.0.tar.bz2 -$ wget http://www.mpfr.org/mpfr-3.1.4/mpfr-3.1.4.tar.bz2 -$ wget ftp://ftp.gnu.org/gnu/mpc/mpc-1.0.3.tar.gz -$ wget http://ftp.gnu.org/gnu/binutils/binutils-2.26.tar.gz -$ wget http://mirror0.babylon.network/gcc/releases/gcc-5.3.0/gcc-5.3.0.tar.gz -$ wget http://download.savannah.gnu.org/releases/avr-libc/avr-libc-2.0.0.tar.bz2 -$ tar -xjf gmp-6.1.0.tar.bz2 -$ tar -xjf mpfr-3.1.4.tar.bz2 -$ tar -zxf mpc-1.0.3.tar.gz -$ tar -zxf binutils-2.26.tar.gz -$ tar -zxf gcc-5.3.0.tar.gz -$ tar -xjf avr-libc-2.0.0.tar.bz2 -``` - -##Setup the Build Environment -These commands will set up the install directory and the `PATH` variable, which will allow you to access your installed packages. Note: if you close the `cygwin` terminal window, you will need to rerun these commands, they are not permanent. -``` -$ PREFIX=$HOME/local/avr -$ export PREFIX -$ PATH=/usr/local/bin:/usr/local/lib:/usr/local/include:/bin:/lib:/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS -$ PATH=$PATH:$PREFIX/bin:$PREFIX/lib -$ export PATH -``` - -##The `gcc` Required Math Library Packages -The following packages are required to be complied and installed in order to compile `gcc`. They are not sufficiently available through the `cygwin` package system, so we have to make them ourselves. They must be complied in this order because each one depends on the previous. Verfiy that for each package, `make check` returns all passing and no fails. - -###Build and Install `gmp` -``` -$ cd ~/src/gmp-6.1.0 -$ ./configure --enable-static --disable-shared -$ make -$ make check -$ make install -``` - -###Build and Install `mpfr` -``` -$ cd ~/src/mpfr-3.1.4 -$ ./configure --with-gmp-build=../gmp-6.1.0 --enable-static --disable-shared -$ make -$ make check -$ make install -``` - -###Build and Install `mpc` -``` -$ cd ~/src/mpc-1.0.3 -$ ./configure --with-gmp=/usr/local --with-mpfr=/usr/local --enable-static --disable-shared -$ make -$ make check -$ make install -``` - -##OPTIONAL Part -You can build and install a brand new `gcc` or you can use the one supplied by `cygwin`. This will take about 4-5 hours to compile (It is a "native build", so it does the entire build **3 times**. This takes a long while). - -###Build and Install `gcc` for Your Machine -``` -$ cd ~/src/gcc-5.3.0 -$ mkdir obj-local -$ cd obj-local -$ ../configure --enable-languages=c,c++ --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local --enable-static --disable-shared -$ make -$ make install -``` -##End OPTIONAL Part - -###Build and Install `binutils` for Your Machine -``` -$ cd ~/src/binutils-2.26 -$ mkdir obj-local -$ cd obj-local -$ ../configure -$ make -$ make install -``` - -##Buliding `binutils`, `gcc`, and `avr-libc` for the AVR system -Now we can make the critical stuff for compiling our firmware: `binutils`, `gcc`, and `avr-libc` for the AVR architecture. These allow us to build and manipulate the firmware for the keyboard. - -###Build `binutils` for AVR -If you plan to build and install `avr-gdb` also, use the `gdb` install at the end of this guide as it also builds the `binutils` -``` -$ cd ~/src/binutils-2.26 -$ mkdir obj-avr -$ cd obj-avr -$ ../configure --prefix=$PREFIX --target=avr --disable-nls -$ make -$ make install -``` - -###Build `gcc` for AVR -``` -$ cd ~/src/gcc-5.3.0 -$ mkdir obj-avr -$ cd obj-avr -$ ../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local --enable-static --disable-shared --disable-nls --disable-libssp --with-dwarf2 -$ make -$ make install -``` - -###Build `avr-libc` for AVR -For building the `avr-libc`, we have to specify the host build system. In my case it is `x86_64-unknown-cygwin`. You can look for build system type in the `gcc` configure notes for the proper `--build` specification to pass when you configure `avr-libc`. -``` -$ cd ~/src/avr-libc-2.0.0 -$ ./configure --prefix=$PREFIX --build=x86_64-unknown-cygwin --host=avr -$ make -$ make install -``` - -##Building 'dfu-programmer' for flashing the firmware via USB and installing the drivers -We can either build our own, or use the precomplied binaries. The precompiled binaries don't play well with `cygwin` so it is better to build them ourselves. The procedure for the precompiled binaries is included at the end of this guide. - -### Build and Install the `libusb` -The `dfu-programmer` requires `libusb` so that it can interact with the USB system. These repos must be bootstrapped in order to create an appropriate `./configure` and `Makefile` for your system. -``` -$ cd ~/src -$ git clone https://github.com/libusb/libusb.git -$ cd libusb -$ ./bootstrap.sh -$ ./configure -$ make -$ make install -``` - -### Build and Install the `dfu-programmer` -``` -$ cd ~/src -$ git clone https://github.com/dfu-programmer/dfu-programmer.git -$ cd dfu-programmer -$ ./bootstrap.sh -$ ./configure -$ make -$ make install -``` - -Verify the installation with: -``` -$ which dfu-programmer -/usr/local/bin/dfu-programmer - -$ dfu-programmer -dfu-programmer 0.7.2 -https://github.com/dfu-programmer/dfu-programmer -Type 'dfu-programmer --help' for a list of commands - 'dfu-programmer --targets' to list supported target devices -``` -If you are not getting the above result, you will not be able to flash the firmware! - -###Install the USB drivers -The drivers are included in the windows binary version of [`dfu-programmer` 0.7.2](http://iweb.dl.sourceforge.net/project/dfu-programmer/dfu-programmer/0.7.2/dfu-programmer-win-0.7.2.zip). -``` -$ cd ~/src -$ wget http://iweb.dl.sourceforge.net/project/dfu-programmer/dfu-programmer/0.7.2/dfu-programmer-win-0.7.2.zip -$ unzip dfu-programmer-win-0.7.2.zip -d dfu-programmer-win-0.7.2 -``` - -or - -The official drivers are found in [Atmel's `FLIP` installer](http://www.atmel.com/images/Flip%20Installer%20-%203.4.7.112.exe). Download and then install `FLIP`. Upon installation, the drivers will be found in `C:\Program Files (x86)\Atmel\Flip 3.4.7\usb`. - -Then, from an **administrator-privileged** `Windows` terminal, run the following command (adjust the path for username, etc. as necessary) and accept the prompt that pops up: -``` -C:\> pnputil -i -a C:\cygwin64\home\Kevin\src\dfu-programmer-win-0.7.2\dfu-prog-usb-1.2.2\atmel_usb_dfu.inf -or -C:\> pnputil -i -a "C:\Program Files (x86)\Atmel\Flip 3.4.7\usb\atmel_usb_dfu.inf" -``` - -This should be the result: -``` -Microsoft PnP Utility - -Processing inf : atmel_usb_dfu.inf -Successfully installed the driver on a device on the system. -Driver package added successfully. -Published name : oem104.inf - - -Total attempted: 1 -Number successfully imported: 1 -``` - -Alternatively, the `Windows` driver can be installed when prompted by `Windows` when the keyboard is attached. Do not let `Windows` search for a driver; specify the path to search for a driver and point it to the `atmel_usb_dfu.inf` file. - -##Building and Flashing the Planck firmware! -If you did everything else right. This part should be a snap! Grab the latest sources from `github`, make the Plank firmware, then flash it. - -###Build Planck and Load the Firmware -``` -$ cd ~/src -$ git clone https://github.com/qmk/qmk_firmware.git -$ cd qmk_firmware/keyboards/planck -$ make -``` - -Make sure there are no errors. You should end up with this or something similar: -``` -Creating load file for Flash: planck.hex -avr-objcopy -O ihex -R .eeprom -R .fuse -R .lock -R .signature planck.elf planck.hex - -Creating load file for EEPROM: planck.eep -avr-objcopy -j .eeprom --set-section-flags=.eeprom="alloc,load" \ ---change-section-lma .eeprom=0 --no-change-warnings -O ihex planck.elf planck.eep || exit 0 - -Creating Extended Listing: planck.lss -avr-objdump -h -S -z planck.elf > planck.lss - -Creating Symbol Table: planck.sym -avr-nm -n planck.elf > planck.sym - -Size after: - text data bss dec hex filename - 18602 82 155 18839 4997 planck.elf - --------- end -------- -``` - -If you do not get the above, you **did not** build the firmware, and you will have nothing to flash. If you have the fresh clone from `github`, it was probably something gone wrong in this install process, go check and see what didn't work and threw errors or what steps you might have missed. - -But if everything went OK, you are ready to flash! Press the reset button on the bottom of the Planck, wait two seconds, then: -``` -$ make dfu -``` -. -. -. -profit!!! - - - - - -##extra bits... - -###Installing Precompiled `dfu-programmer` Binaries (not recommended for `cygwin`) -To install the `dfu-programmer` from the binaries, we must get if from [the `dfu-programmer` website](https://dfu-programmer.github.io/) ([0.7.2](http://iweb.dl.sourceforge.net/project/dfu-programmer/dfu-programmer/0.7.2/dfu-programmer-win-0.7.2.zip)). - -Copy this file into your `cygwin` home\src directory. (For me, it is `C:\cygwin64\home\Kevin\src`), extract the files, move `dfu-programmer.exe` to `~/local/avr/bin`. Most obnoxiously, the `libusb0_x86.dll` and `libusb0.sys` need to be moved from `./dfu-prog-usb-1.2.2/x86/` to a directory in the `Windows` `PATH` and the `cygwin` `PATH`. This is because the `dfu-programmer` binary is `mingw` based, not `cygwin` based, so the `dlls` do not cooperate. I achieved acceptable pathing by moving the files to `C:\cygwin64\home\Kevin\local\avr\bin` Then, in a `WINDOWS` command prompt running (Adjusting your path for username, etc. as needed): -``` -C:\> set PATH=%PATH%;C:\cygwin64\home\Kevin\local\avr\bin -``` - -Then, rename `libusb0_x86.dll` to `libusb0.dll`. - -You can tell that you were successful by trying to execute 'dfu-programmer' from the 'cygwin' prompt: -``` -$ which dfu-programmer -/home/Kevin/local/avr/bin/dfu-programmer - -$ dfu-programmer -dfu-programmer 0.7.2 -https://github.com/dfu-programmer/dfu-programmer -Type 'dfu-programmer --help' for a list of commands - 'dfu-programmer --targets' to list supported target devices -``` - -If you are not getting the above result, you will not be able to flash the firmware! -- Try making sure your `PATH` variables are set correctly for both `Windows` and `cygwin`. -- Make sure the `dll` is named correctly. -- Do not extract it with `cygwin`'s `unzip` as it does not set the executable permission. If you did it anyway, do `chmod +x dfu-programmer.exe`. -- Still have problems? Try building it instead. - - -##Debugging Tools - -These tools are for debugging your firmware, etc. before flashing. Theoretically, it can save your memory from wearing out. However, these tool do not work 100% for the Planck firmware. - -### `gdb` for AVR -`gdb` has a simulator for AVR but it does not support all instructions (like WDT), so it immediately crashes when running the Planck firmware (because `lufa.c` disables the WDT in the first few lines of execution). But it can still be useful in debugging example code and test cases, if you know how to use it. - -``` -$ cd ~/src -$ git clone git://sourceware.org/git/binutils-gdb.git -$ cd binutils-gdb -$ mkdir obj-avr -$ cd obj-avr -$ ../configure --prefix=$PREFIX --target=avr --build=x86_64-unknown-cygwin --with-gmp=/usr/local --with-mpfr=/usr/local --with-mpc=/usr/local --disable-nls --enable-static -$ make -$ make install -``` - -### `simulavr` -`simulavr` is an AVR simulator. It runs the complied AVR elfs. `simulavr` does not support the `atmega32u4` device... it does `atmega32` but that is not good enough for the firmware (no PORTE and other things), so you cannot run the Planck firmware. I use it to simulate ideas I have for features in separate test projects. - -This one is a major pain in the butt because it has a lot of dependencies and it is buggy. I will do my best to explain it but... it was hard to figure out. A few things need to be changed in the 'Makefile' to make it work in `cygwin`. - - -``` -$ cd ~/src -$ git clone https://github.com/Traumflug/simulavr.git -$ cd simulavr -$ ./bootstrap -$ ./configure --prefix=$PREFIX --enable-static --disable-tcl --disable-doxygen-doc -``` - Edit `src/Makefile.am` now so that `-no-undefined` is included (I did this by removing the SYS_MINGW conditional surrounding `libsim_la_LDFLAGS += -no-undefined` and `libsimulavr_la_LDFLAGS += -no-undefined \ libsimulavr_la_LIBADD += $(TCL_LIB)`. Also, `$(EXEEXT)` is added after `kbdgentables` in two places. - -``` -$ make -$ make install -``` - - -TODO: -- git repos for all sources -- command line magic for cygwin setup -- better options for `dfu-drivers` |