use std::cmp::{PartialOrd}; use std::ops::{Add, Sub, Mul, Div, Rem}; use ::num_traits::{Trig, Float}; // generic number type, but realistically it's only useful for // floats. Maybe also complex pub struct Sinusoid { amplitude: T, frequency: T, phase: T } impl Sinusoid { pub fn new(amplitude:T, frequency: T, phase: T) -> Sinusoid { Sinusoid { amplitude: amplitude, frequency: frequency, phase: phase } } } impl Sinusoid where T: Float + Copy { pub fn period(&self) -> T { self.frequency.recip() } } impl Sinusoid where T: Float + Add + Sub + Mul + Div + From + Trig + Copy + PartialOrd + Rem { pub fn radial_frequency(&self) -> T { (T::from(2))*T::pi()*self.frequency } pub fn sample(&self, t: T) -> T { (self.radial_frequency()*(t%self.period()) + self.phase).cos() * self.amplitude } //inclusive of start, exclusive of end pub fn sample_range(&self, start: T, end: T, sample_rate: T) -> Vec { let sample_resolution = T::from(1) / sample_rate; let mut result = Vec::new(); let mut i: u16 = 0; loop { let t = start + T::from(i)/sample_rate; if t >= end { break; } result.push(self.sample(t)); i += 1; } result } } #[cfg(test)] mod tests { use super::*; use std::f32; #[test] fn period() { let sinusoid = Sinusoid::new(1.0 as f32, 0.5, 0.0); assert!((sinusoid.period()-2.0) < f32::EPSILON); } #[test] fn radial_f() { let sinusoid = Sinusoid::new(1.0 as f32, 1.0, 0.0); assert!((sinusoid.radial_frequency()-2.0*f32::consts::PI) < f32::EPSILON); } #[test] fn sample() { let sinusoid = Sinusoid::new(1.0 as f32, 1.0, -f32::consts::PI/2.0); //AKA sin assert!((sinusoid.sample(0.0)-0.0) < f32::EPSILON); assert!((sinusoid.sample(0.25)-1.0) < f32::EPSILON); assert!((sinusoid.sample(0.5)-0.0) < f32::EPSILON); assert!((sinusoid.sample(0.75)+1.0) < f32::EPSILON); assert!((sinusoid.sample(1.0)-0.0) < f32::EPSILON); } #[test] fn sample_range() { let sinusoid = Sinusoid::new(1.0 as f32, 1.0, -f32::consts::PI/2.0); //AKA sin let samples = sinusoid.sample_range(0.0, 100.0, 4.0); println!("Epsilon is {}", f32::EPSILON); assert_eq!(samples.len(), 400); for i in (0..100).map(|i| i*4) { assert!((samples[i+0]-0.0) < f32::EPSILON, "Sample {} was {}", i+0, samples[i+0]); assert!((samples[i+1]-1.0) < f32::EPSILON, "Sample {} was {}", i+1, samples[i+1]); assert!((samples[i+2]-0.0) < f32::EPSILON, "Sample {} was {}", i+2, samples[i+2]); assert!((samples[i+3]+1.0) < f32::EPSILON, "Sample {} was {}", i+3, samples[i+3]); } } }