/* The MIT License (MIT) Copyright (c) 2016 Fred Sundvik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "visualizer.h" #include "config.h" #include <string.h> #ifdef PROTOCOL_CHIBIOS #include "ch.h" #endif #include "gfx.h" #ifdef LCD_BACKLIGHT_ENABLE #include "lcd_backlight.h" #endif //#define DEBUG_VISUALIZER #ifdef DEBUG_VISUALIZER #include "debug.h" #else #include "nodebug.h" #endif #ifdef SERIAL_LINK_ENABLE #include "serial_link/protocol/transport.h" #include "serial_link/system/serial_link.h" #endif // Define this in config.h #ifndef VISUALIZER_THREAD_PRIORITY #define "Visualizer thread priority not defined" #endif // mods status #include "action_util.h" static visualizer_keyboard_status_t current_status = { .layer = 0xFFFFFFFF, .default_layer = 0xFFFFFFFF, .mods = 0xFF, .leds = 0xFFFFFFFF, .suspended = false, }; static bool same_status(visualizer_keyboard_status_t* status1, visualizer_keyboard_status_t* status2) { return status1->layer == status2->layer && status1->default_layer == status2->default_layer && status1->mods == status2->mods && status1->leds == status2->leds && status1->suspended == status2->suspended; } static bool visualizer_enabled = false; #define MAX_SIMULTANEOUS_ANIMATIONS 4 static keyframe_animation_t* animations[MAX_SIMULTANEOUS_ANIMATIONS] = {}; #ifdef SERIAL_LINK_ENABLE MASTER_TO_ALL_SLAVES_OBJECT(current_status, visualizer_keyboard_status_t); static remote_object_t* remote_objects[] = { REMOTE_OBJECT(current_status), }; #endif GDisplay* LCD_DISPLAY = 0; GDisplay* LED_DISPLAY = 0; __attribute__((weak)) GDisplay* get_lcd_display(void) { return gdispGetDisplay(0); } __attribute__((weak)) GDisplay* get_led_display(void) { return gdispGetDisplay(1); } void start_keyframe_animation(keyframe_animation_t* animation) { animation->current_frame = -1; animation->time_left_in_frame = 0; animation->need_update = true; int free_index = -1; for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) { if (animations[i] == animation) { return; } if (free_index == -1 && animations[i] == NULL) { free_index=i; } } if (free_index!=-1) { animations[free_index] = animation; } } void stop_keyframe_animation(keyframe_animation_t* animation) { animation->current_frame = animation->num_frames; animation->time_left_in_frame = 0; animation->need_update = true; animation->first_update_of_frame = false; animation->last_update_of_frame = false; for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) { if (animations[i] == animation) { animations[i] = NULL; return; } } } void stop_all_keyframe_animations(void) { for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) { if (animations[i]) { animations[i]->current_frame = animations[i]->num_frames; animations[i]->time_left_in_frame = 0; animations[i]->need_update = true; animations[i]->first_update_of_frame = false; animations[i]->last_update_of_frame = false; animations[i] = NULL; } } } static bool update_keyframe_animation(keyframe_animation_t* animation, visualizer_state_t* state, systemticks_t delta, systemticks_t* sleep_time) { // TODO: Clean up this messy code dprintf("Animation frame%d, left %d, delta %d\n", animation->current_frame, animation->time_left_in_frame, delta); if (animation->current_frame == animation->num_frames) { animation->need_update = false; return false; } if (animation->current_frame == -1) { animation->current_frame = 0; animation->time_left_in_frame = animation->frame_lengths[0]; animation->need_update = true; animation->first_update_of_frame = true; } else { animation->time_left_in_frame -= delta; while (animation->time_left_in_frame <= 0) { int left = animation->time_left_in_frame; if (animation->need_update) { animation->time_left_in_frame = 0; animation->last_update_of_frame = true; (*animation->frame_functions[animation->current_frame])(animation, state); animation->last_update_of_frame = false; } animation->current_frame++; animation->need_update = true; animation->first_update_of_frame = true; if (animation->current_frame == animation->num_frames) { if (animation->loop) { animation->current_frame = 0; } else { stop_keyframe_animation(animation); return false; } } delta = -left; animation->time_left_in_frame = animation->frame_lengths[animation->current_frame]; animation->time_left_in_frame -= delta; } } if (animation->need_update) { animation->need_update = (*animation->frame_functions[animation->current_frame])(animation, state); animation->first_update_of_frame = false; } systemticks_t wanted_sleep = animation->need_update ? gfxMillisecondsToTicks(10) : (unsigned)animation->time_left_in_frame; if (wanted_sleep < *sleep_time) { *sleep_time = wanted_sleep; } return true; } void run_next_keyframe(keyframe_animation_t* animation, visualizer_state_t* state) { int next_frame = animation->current_frame + 1; if (next_frame == animation->num_frames) { next_frame = 0; } keyframe_animation_t temp_animation = *animation; temp_animation.current_frame = next_frame; temp_animation.time_left_in_frame = animation->frame_lengths[next_frame]; temp_animation.first_update_of_frame = true; temp_animation.last_update_of_frame = false; temp_animation.need_update = false; visualizer_state_t temp_state = *state; (*temp_animation.frame_functions[next_frame])(&temp_animation, &temp_state); } bool keyframe_no_operation(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; (void)state; return false; } #ifdef LCD_BACKLIGHT_ENABLE bool keyframe_animate_backlight_color(keyframe_animation_t* animation, visualizer_state_t* state) { int frame_length = animation->frame_lengths[animation->current_frame]; int current_pos = frame_length - animation->time_left_in_frame; uint8_t t_h = LCD_HUE(state->target_lcd_color); uint8_t t_s = LCD_SAT(state->target_lcd_color); uint8_t t_i = LCD_INT(state->target_lcd_color); uint8_t p_h = LCD_HUE(state->prev_lcd_color); uint8_t p_s = LCD_SAT(state->prev_lcd_color); uint8_t p_i = LCD_INT(state->prev_lcd_color); uint8_t d_h1 = t_h - p_h; //Modulo arithmetic since we want to wrap around int d_h2 = t_h - p_h; // Chose the shortest way around int d_h = abs(d_h2) < d_h1 ? d_h2 : d_h1; int d_s = t_s - p_s; int d_i = t_i - p_i; int hue = (d_h * current_pos) / frame_length; int sat = (d_s * current_pos) / frame_length; int intensity = (d_i * current_pos) / frame_length; //dprintf("%X -> %X = %X\n", p_h, t_h, hue); hue += p_h; sat += p_s; intensity += p_i; state->current_lcd_color = LCD_COLOR(hue, sat, intensity); lcd_backlight_color( LCD_HUE(state->current_lcd_color), LCD_SAT(state->current_lcd_color), LCD_INT(state->current_lcd_color)); return true; } bool keyframe_set_backlight_color(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; state->prev_lcd_color = state->target_lcd_color; state->current_lcd_color = state->target_lcd_color; lcd_backlight_color( LCD_HUE(state->current_lcd_color), LCD_SAT(state->current_lcd_color), LCD_INT(state->current_lcd_color)); return false; } #endif // LCD_BACKLIGHT_ENABLE #ifdef LCD_ENABLE bool keyframe_display_layer_text(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; gdispClear(White); gdispDrawString(0, 10, state->layer_text, state->font_dejavusansbold12, Black); gdispFlush(); return false; } static void format_layer_bitmap_string(uint16_t default_layer, uint16_t layer, char* buffer) { for (int i=0; i<16;i++) { uint32_t mask = (1u << i); if (default_layer & mask) { if (layer & mask) { *buffer = 'B'; } else { *buffer = 'D'; } } else if (layer & mask) { *buffer = '1'; } else { *buffer = '0'; } ++buffer; if (i==3 || i==7 || i==11) { *buffer = ' '; ++buffer; } } *buffer = 0; } bool keyframe_display_layer_bitmap(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; const char* layer_help = "1=On D=Default B=Both"; char layer_buffer[16 + 4]; // 3 spaces and one null terminator gdispClear(White); gdispDrawString(0, 0, layer_help, state->font_fixed5x8, Black); format_layer_bitmap_string(state->status.default_layer, state->status.layer, layer_buffer); gdispDrawString(0, 10, layer_buffer, state->font_fixed5x8, Black); format_layer_bitmap_string(state->status.default_layer >> 16, state->status.layer >> 16, layer_buffer); gdispDrawString(0, 20, layer_buffer, state->font_fixed5x8, Black); gdispFlush(); return false; } static void format_mods_bitmap_string(uint8_t mods, char* buffer) { *buffer = ' '; ++buffer; for (int i = 0; i<8; i++) { uint32_t mask = (1u << i); if (mods & mask) { *buffer = '1'; } else { *buffer = '0'; } ++buffer; if (i==3) { *buffer = ' '; ++buffer; } } *buffer = 0; } bool keyframe_display_mods_bitmap(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; const char* title = "Modifier states"; const char* mods_header = " CSAG CSAG "; char status_buffer[12]; gdispClear(White); gdispDrawString(0, 0, title, state->font_fixed5x8, Black); gdispDrawString(0, 10, mods_header, state->font_fixed5x8, Black); format_mods_bitmap_string(state->status.mods, status_buffer); gdispDrawString(0, 20, status_buffer, state->font_fixed5x8, Black); gdispFlush(); return false; } #endif // LCD_ENABLE bool keyframe_disable_lcd_and_backlight(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; (void)state; #ifdef LCD_ENABLE gdispSetPowerMode(powerOff); #endif #ifdef LCD_BACKLIGHT_ENABLE lcd_backlight_hal_color(0, 0, 0); #endif return false; } bool keyframe_enable_lcd_and_backlight(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; (void)state; #ifdef LCD_ENABLE gdispSetPowerMode(powerOn); #endif return false; } bool enable_visualization(keyframe_animation_t* animation, visualizer_state_t* state) { (void)animation; (void)state; dprint("User visualizer inited\n"); visualizer_enabled = true; return false; } // TODO: Optimize the stack size, this is probably way too big static DECLARE_THREAD_STACK(visualizerThreadStack, 1024); static DECLARE_THREAD_FUNCTION(visualizerThread, arg) { (void)arg; GListener event_listener; geventListenerInit(&event_listener); geventAttachSource(&event_listener, (GSourceHandle)¤t_status, 0); visualizer_keyboard_status_t initial_status = { .default_layer = 0xFFFFFFFF, .layer = 0xFFFFFFFF, .mods = 0xFF, .leds = 0xFFFFFFFF, .suspended = false, }; visualizer_state_t state = { .status = initial_status, .current_lcd_color = 0, #ifdef LCD_ENABLE .font_fixed5x8 = gdispOpenFont("fixed_5x8"), .font_dejavusansbold12 = gdispOpenFont("DejaVuSansBold12") #endif }; initialize_user_visualizer(&state); state.prev_lcd_color = state.current_lcd_color; #ifdef LCD_BACKLIGHT_ENABLE lcd_backlight_color( LCD_HUE(state.current_lcd_color), LCD_SAT(state.current_lcd_color), LCD_INT(state.current_lcd_color)); #endif systemticks_t sleep_time = TIME_INFINITE; systemticks_t current_time = gfxSystemTicks(); while(true) { systemticks_t new_time = gfxSystemTicks(); systemticks_t delta = new_time - current_time; current_time = new_time; bool enabled = visualizer_enabled; if (!same_status(&state.status, ¤t_status)) { if (visualizer_enabled) { if (current_status.suspended) { stop_all_keyframe_animations(); visualizer_enabled = false; state.status = current_status; user_visualizer_suspend(&state); } else { state.status = current_status; update_user_visualizer_state(&state); } state.prev_lcd_color = state.current_lcd_color; } } if (!enabled && state.status.suspended && current_status.suspended == false) { // Setting the status to the initial status will force an update // when the visualizer is enabled again state.status = initial_status; state.status.suspended = false; stop_all_keyframe_animations(); user_visualizer_resume(&state); state.prev_lcd_color = state.current_lcd_color; } sleep_time = TIME_INFINITE; for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) { if (animations[i]) { update_keyframe_animation(animations[i], &state, delta, &sleep_time); } } #ifdef LED_ENABLE gdispGFlush(LED_DISPLAY); #endif #ifdef EMULATOR draw_emulator(); #endif // The animation can enable the visualizer // And we might need to update the state when that happens // so don't sleep if (enabled != visualizer_enabled) { sleep_time = 0; } systemticks_t after_update = gfxSystemTicks(); unsigned update_delta = after_update - current_time; if (sleep_time != TIME_INFINITE) { if (sleep_time > update_delta) { sleep_time -= update_delta; } else { sleep_time = 0; } } dprintf("Update took %d, last delta %d, sleep_time %d\n", update_delta, delta, sleep_time); #ifdef PROTOCOL_CHIBIOS // The gEventWait function really takes milliseconds, even if the documentation says ticks. // Unfortunately there's no generic ugfx conversion from system time to milliseconds, // so let's do it in a platform dependent way. // On windows the system ticks is the same as milliseconds anyway if (sleep_time != TIME_INFINITE) { sleep_time = ST2MS(sleep_time); } #endif geventEventWait(&event_listener, sleep_time); } #ifdef LCD_ENABLE gdispCloseFont(state.font_fixed5x8); gdispCloseFont(state.font_dejavusansbold12); #endif return 0; } void visualizer_init(void) { gfxInit(); #ifdef LCD_BACKLIGHT_ENABLE lcd_backlight_init(); #endif #ifdef SERIAL_LINK_ENABLE add_remote_objects(remote_objects, sizeof(remote_objects) / sizeof(remote_object_t*) ); #endif #ifdef LCD_ENABLE LCD_DISPLAY = get_lcd_display(); #endif #ifdef LED_ENABLE LED_DISPLAY = get_led_display(); #endif // We are using a low priority thread, the idea is to have it run only // when the main thread is sleeping during the matrix scanning gfxThreadCreate(visualizerThreadStack, sizeof(visualizerThreadStack), VISUALIZER_THREAD_PRIORITY, visualizerThread, NULL); } void update_status(bool changed) { if (changed) { GSourceListener* listener = geventGetSourceListener((GSourceHandle)¤t_status, NULL); if (listener) { geventSendEvent(listener); } } #ifdef SERIAL_LINK_ENABLE static systime_t last_update = 0; systime_t current_update = chVTGetSystemTimeX(); systime_t delta = current_update - last_update; if (changed || delta > MS2ST(10)) { last_update = current_update; visualizer_keyboard_status_t* r = begin_write_current_status(); *r = current_status; end_write_current_status(); } #endif } uint8_t visualizer_get_mods() { uint8_t mods = get_mods(); #ifndef NO_ACTION_ONESHOT if (!has_oneshot_mods_timed_out()) { mods |= get_oneshot_mods(); } #endif return mods; } void visualizer_update(uint32_t default_state, uint32_t state, uint8_t mods, uint32_t leds) { // Note that there's a small race condition here, the thread could read // a state where one of these are set but not the other. But this should // not really matter as it will be fixed during the next loop step. // Alternatively a mutex could be used instead of the volatile variables bool changed = false; #ifdef SERIAL_LINK_ENABLE if (is_serial_link_connected ()) { visualizer_keyboard_status_t* new_status = read_current_status(); if (new_status) { if (!same_status(¤t_status, new_status)) { changed = true; current_status = *new_status; } } } else { #else { #endif visualizer_keyboard_status_t new_status = { .layer = state, .default_layer = default_state, .mods = mods, .leds = leds, .suspended = current_status.suspended, }; if (!same_status(¤t_status, &new_status)) { changed = true; current_status = new_status; } } update_status(changed); } void visualizer_suspend(void) { current_status.suspended = true; update_status(true); } void visualizer_resume(void) { current_status.suspended = false; update_status(true); }