/* Copyright 2012 Jun Wako Generated by planckkeyboard.com (2014 Jack Humbert) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include <avr/io.h> #include <util/delay.h> #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #ifndef DEBOUNCE # define DEBOUNCE 10 #endif static uint8_t debouncing = DEBOUNCE; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; #if DIODE_DIRECTION == ROW2COL static matrix_row_t matrix_reversed[MATRIX_COLS]; static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS]; #endif static matrix_row_t read_cols(void); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); __attribute__ ((weak)) void * matrix_init_kb(void) { }; __attribute__ ((weak)) void * matrix_scan_kb(void) { }; inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { // To use PORTF disable JTAG with writing JTD bit twice within four cycles. MCUCR |= (1<<JTD); MCUCR |= (1<<JTD); // initialize row and col unselect_rows(); init_cols(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } if (matrix_init_kb) { (*matrix_init_kb)(); } } uint8_t matrix_scan(void) { #if DIODE_DIRECTION == COL2ROW for (uint8_t i = 0; i < MATRIX_ROWS; i++) { select_row(i); _delay_us(30); // without this wait read unstable value. matrix_row_t cols = read_cols(); if (matrix_debouncing[i] != cols) { matrix_debouncing[i] = cols; if (debouncing) { debug("bounce!: "); debug_hex(debouncing); debug("\n"); } debouncing = DEBOUNCE; } unselect_rows(); } if (debouncing) { if (--debouncing) { _delay_ms(1); } else { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = matrix_debouncing[i]; } } } #else for (uint8_t i = 0; i < MATRIX_COLS; i++) { select_row(i); _delay_us(30); // without this wait read unstable value. matrix_row_t rows = read_cols(); if (matrix_reversed_debouncing[i] != rows) { matrix_reversed_debouncing[i] = rows; if (debouncing) { debug("bounce!: "); debug_hex(debouncing); debug("\n"); } debouncing = DEBOUNCE; } unselect_rows(); } if (debouncing) { if (--debouncing) { _delay_ms(1); } else { for (uint8_t i = 0; i < MATRIX_COLS; i++) { matrix_reversed[i] = matrix_reversed_debouncing[i]; } } } for (uint8_t y = 0; y < MATRIX_ROWS; y++) { matrix_row_t row = 0; for (uint8_t x = 0; x < MATRIX_COLS; x++) { row |= ((matrix_reversed[x] & (1<<y)) >> y) << x; } matrix[y] = row; } #endif if (matrix_scan_kb) { (*matrix_scan_kb)(); } return 1; } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 0123456789ABCDEF\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); pbin_reverse16(matrix_get_row(row)); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += bitpop16(matrix[i]); } return count; } static void init_cols(void) { int B = 0, C = 0, D = 0, E = 0, F = 0; #if DIODE_DIRECTION == COL2ROW for(int x = 0; x < MATRIX_COLS; x++) { int col = COLS[x]; #else for(int x = 0; x < MATRIX_ROWS; x++) { int col = ROWS[x]; #endif if ((col & 0xF0) == 0x20) { B |= (1<<(col & 0x0F)); } else if ((col & 0xF0) == 0x30) { C |= (1<<(col & 0x0F)); } else if ((col & 0xF0) == 0x40) { D |= (1<<(col & 0x0F)); } else if ((col & 0xF0) == 0x50) { E |= (1<<(col & 0x0F)); } else if ((col & 0xF0) == 0x60) { F |= (1<<(col & 0x0F)); } } DDRB &= ~(B); PORTB |= (B); DDRC &= ~(C); PORTC |= (C); DDRD &= ~(D); PORTD |= (D); DDRE &= ~(E); PORTE |= (E); DDRF &= ~(F); PORTF |= (F); } static matrix_row_t read_cols(void) { matrix_row_t result = 0; #if DIODE_DIRECTION == COL2ROW for(int x = 0; x < MATRIX_COLS; x++) { int col = COLS[x]; #else for(int x = 0; x < MATRIX_ROWS; x++) { int col = ROWS[x]; #endif if ((col & 0xF0) == 0x20) { result |= (PINB&(1<<(col & 0x0F)) ? 0 : (1<<x)); } else if ((col & 0xF0) == 0x30) { result |= (PINC&(1<<(col & 0x0F)) ? 0 : (1<<x)); } else if ((col & 0xF0) == 0x40) { result |= (PIND&(1<<(col & 0x0F)) ? 0 : (1<<x)); } else if ((col & 0xF0) == 0x50) { result |= (PINE&(1<<(col & 0x0F)) ? 0 : (1<<x)); } else if ((col & 0xF0) == 0x60) { result |= (PINF&(1<<(col & 0x0F)) ? 0 : (1<<x)); } } return result; } static void unselect_rows(void) { int B = 0, C = 0, D = 0, E = 0, F = 0; #if DIODE_DIRECTION == COL2ROW for(int x = 0; x < MATRIX_ROWS; x++) { int row = ROWS[x]; #else for(int x = 0; x < MATRIX_COLS; x++) { int row = COLS[x]; #endif if ((row & 0xF0) == 0x20) { B |= (1<<(row & 0x0F)); } else if ((row & 0xF0) == 0x30) { C |= (1<<(row & 0x0F)); } else if ((row & 0xF0) == 0x40) { D |= (1<<(row & 0x0F)); } else if ((row & 0xF0) == 0x50) { E |= (1<<(row & 0x0F)); } else if ((row & 0xF0) == 0x60) { F |= (1<<(row & 0x0F)); } } DDRB &= ~(B); PORTB |= (B); DDRC &= ~(C); PORTC |= (C); DDRD &= ~(D); PORTD |= (D); DDRE &= ~(E); PORTE |= (E); DDRF &= ~(F); PORTF |= (F); } static void select_row(uint8_t row) { #if DIODE_DIRECTION == COL2ROW int row_pin = ROWS[row]; #else int row_pin = COLS[row]; #endif if ((row_pin & 0xF0) == 0x20) { DDRB |= (1<<(row_pin & 0x0F)); PORTB &= ~(1<<(row_pin & 0x0F)); } else if ((row_pin & 0xF0) == 0x30) { DDRC |= (1<<(row_pin & 0x0F)); PORTC &= ~(1<<(row_pin & 0x0F)); } else if ((row_pin & 0xF0) == 0x40) { DDRD |= (1<<(row_pin & 0x0F)); PORTD &= ~(1<<(row_pin & 0x0F)); } else if ((row_pin & 0xF0) == 0x50) { DDRE |= (1<<(row_pin & 0x0F)); PORTE &= ~(1<<(row_pin & 0x0F)); } else if ((row_pin & 0xF0) == 0x60) { DDRF |= (1<<(row_pin & 0x0F)); PORTF &= ~(1<<(row_pin & 0x0F)); } }