/* Copyright 2017 Jason Williams (Wilba) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "keymap.h" // to get keymaps[][][] #include "tmk_core/common/eeprom.h" #include "progmem.h" // to read default from flash #include "quantum.h" // for send_string() #include "dynamic_keymap.h" #include "via.h" // for default VIA_EEPROM_ADDR_END #ifndef DYNAMIC_KEYMAP_LAYER_COUNT # define DYNAMIC_KEYMAP_LAYER_COUNT 4 #endif #ifndef DYNAMIC_KEYMAP_MACRO_COUNT # define DYNAMIC_KEYMAP_MACRO_COUNT 16 #endif // This is the default EEPROM max address to use for dynamic keymaps. // The default is the ATmega32u4 EEPROM max address. // Explicitly override it if the keyboard uses a microcontroller with // more EEPROM *and* it makes sense to increase it. #ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR # if defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) # define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 2047 # elif defined(__AVR_AT90USB162__) # define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 511 # else # define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR 1023 # endif #endif // Due to usage of uint16_t check for max 65535 #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > 65535 # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR must be less than 65536 #endif // If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h, // default it start after VIA_EEPROM_CUSTOM_ADDR+VIA_EEPROM_CUSTOM_SIZE #ifndef DYNAMIC_KEYMAP_EEPROM_ADDR # ifdef VIA_EEPROM_CUSTOM_CONFIG_ADDR # define DYNAMIC_KEYMAP_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR + VIA_EEPROM_CUSTOM_CONFIG_SIZE) # else # error DYNAMIC_KEYMAP_EEPROM_ADDR not defined # endif #endif // Dynamic macro starts after dynamic keymaps #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR # define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2)) #endif // Sanity check that dynamic keymaps fit in available EEPROM // If there's not 100 bytes available for macros, then something is wrong. // The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it, // or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has // more than the default. #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR < 100 # error Dynamic keymaps are configured to use more EEPROM than is available. #endif // Dynamic macros are stored after the keymaps and use what is available // up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR. #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE # define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1) #endif uint8_t dynamic_keymap_get_layer_count(void) { return DYNAMIC_KEYMAP_LAYER_COUNT; } void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) { // TODO: optimize this with some left shifts return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2); } uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) { void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column); // Big endian, so we can read/write EEPROM directly from host if we want uint16_t keycode = eeprom_read_byte(address) << 8; keycode |= eeprom_read_byte(address + 1); return keycode; } void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) { void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column); // Big endian, so we can read/write EEPROM directly from host if we want eeprom_update_byte(address, (uint8_t)(keycode >> 8)); eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF)); } void dynamic_keymap_reset(void) { // Reset the keymaps in EEPROM to what is in flash. // All keyboards using dynamic keymaps should define a layout // for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT. for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) { for (int row = 0; row < MATRIX_ROWS; row++) { for (int column = 0; column < MATRIX_COLS; column++) { dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column])); } } } } void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) { uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2; void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset); uint8_t *target = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < dynamic_keymap_eeprom_size) { *target = eeprom_read_byte(source); } else { *target = 0x00; } source++; target++; } } void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) { uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2; void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset); uint8_t *source = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < dynamic_keymap_eeprom_size) { eeprom_update_byte(target, *source); } source++; target++; } } // This overrides the one in quantum/keymap_common.c uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) { if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) { return dynamic_keymap_get_keycode(layer, key.row, key.col); } else { return KC_NO; } } uint8_t dynamic_keymap_macro_get_count(void) { return DYNAMIC_KEYMAP_MACRO_COUNT; } uint16_t dynamic_keymap_macro_get_buffer_size(void) { return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE; } void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) { void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset); uint8_t *target = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) { *target = eeprom_read_byte(source); } else { *target = 0x00; } source++; target++; } } void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) { void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset); uint8_t *source = data; for (uint16_t i = 0; i < size; i++) { if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) { eeprom_update_byte(target, *source); } source++; target++; } } void dynamic_keymap_macro_reset(void) { void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR); void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE); while (p != end) { eeprom_update_byte(p, 0); ++p; } } void dynamic_keymap_macro_send(uint8_t id) { if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) { return; } // Check the last byte of the buffer. // If it's not zero, then we are in the middle // of buffer writing, possibly an aborted buffer // write. So do nothing. void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1); if (eeprom_read_byte(p) != 0) { return; } // Skip N null characters // p will then point to the Nth macro p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR); void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE); while (id > 0) { // If we are past the end of the buffer, then the buffer // contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT // nulls in the buffer. if (p == end) { return; } if (eeprom_read_byte(p) == 0) { --id; } ++p; } // Send the macro string one or three chars at a time // by making temporary 1 or 3 char strings char data[4] = {0, 0, 0, 0}; // We already checked there was a null at the end of // the buffer, so this cannot go past the end while (1) { data[0] = eeprom_read_byte(p++); data[1] = 0; // Stop at the null terminator of this macro string if (data[0] == 0) { break; } // If the char is magic (tap, down, up), // add the next char (key to use) and send a 3 char string. if (data[0] == SS_TAP_CODE || data[0] == SS_DOWN_CODE || data[0] == SS_UP_CODE) { data[1] = data[0]; data[0] = SS_QMK_PREFIX; data[2] = eeprom_read_byte(p++); if (data[2] == 0) { break; } } send_string(data); } }