#include <ch.h> #include "timer.h" static uint32_t reset_point = 0; #if CH_CFG_ST_RESOLUTION < 32 static uint32_t last_systime = 0; static uint32_t overflow = 0; #endif void timer_init(void) { timer_clear(); } void timer_clear(void) { reset_point = (uint32_t)chVTGetSystemTime(); #if CH_CFG_ST_RESOLUTION < 32 last_systime = reset_point; overflow = 0; #endif } uint16_t timer_read(void) { return (uint16_t)timer_read32(); } uint32_t timer_read32(void) { uint32_t systime = (uint32_t)chVTGetSystemTime(); #if CH_CFG_ST_RESOLUTION < 32 // If/when we need to support 64-bit chips, this may need to be modified to match the native bit-ness of the MCU. // At this point, the only SysTick resolution allowed other than 32 is 16 bit. // In the 16-bit case, at: // - CH_CFG_ST_FREQUENCY = 100000, overflow will occur every ~0.65 seconds // - CH_CFG_ST_FREQUENCY = 10000, overflow will occur every ~6.5 seconds // - CH_CFG_ST_FREQUENCY = 1000, overflow will occur every ~65 seconds // With this implementation, as long as we ensure a timer read happens at least once during the overflow period, timing should be accurate. if (systime < last_systime) { overflow += ((uint32_t)1) << CH_CFG_ST_RESOLUTION; } last_systime = systime; return (uint32_t)TIME_I2MS(systime - reset_point + overflow); #else return (uint32_t)TIME_I2MS(systime - reset_point); #endif } uint16_t timer_elapsed(uint16_t last) { return TIMER_DIFF_16(timer_read(), last); } uint32_t timer_elapsed32(uint32_t last) { return TIMER_DIFF_32(timer_read32(), last); }