/* Copyright 2021 Drashna Jael're * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include QMK_KEYBOARD_H #include "rgb_functions.h" #ifdef RGBLIGHT_ENABLE # include "ws2812.h" # include <avr/interrupt.h> # include <avr/io.h> # include <util/delay.h> # define pinmask(pin) (_BV((pin)&0xF)) /* * Forward declare internal functions * * The functions take a byte-array and send to the data output as WS2812 bitstream. * The length is the number of bytes to send - three per LED. */ static inline void ws2812_sendarray_mask(uint8_t *data, uint16_t datlen, uint8_t masklo, uint8_t maskhi); /* This routine writes an array of bytes with RGB values to the Dataout pin using the fast 800kHz clockless WS2811/2812 protocol. */ // Timing in ns # define w_zeropulse 350 # define w_onepulse 900 # define w_totalperiod 1250 // Fixed cycles used by the inner loop # define w_fixedlow 2 # define w_fixedhigh 4 # define w_fixedtotal 8 // Insert NOPs to match the timing, if possible # define w_zerocycles (((F_CPU / 1000) * w_zeropulse) / 1000000) # define w_onecycles (((F_CPU / 1000) * w_onepulse + 500000) / 1000000) # define w_totalcycles (((F_CPU / 1000) * w_totalperiod + 500000) / 1000000) // w1_nops - nops between rising edge and falling edge - low # if w_zerocycles >= w_fixedlow # define w1_nops (w_zerocycles - w_fixedlow) # else # define w1_nops 0 # endif // w2_nops - nops between fe low and fe high # if w_onecycles >= (w_fixedhigh + w1_nops) # define w2_nops (w_onecycles - w_fixedhigh - w1_nops) # else # define w2_nops 0 # endif // w3_nops - nops to complete loop # if w_totalcycles >= (w_fixedtotal + w1_nops + w2_nops) # define w3_nops (w_totalcycles - w_fixedtotal - w1_nops - w2_nops) # else # define w3_nops 0 # endif // The only critical timing parameter is the minimum pulse length of the "0" // Warn or throw error if this timing can not be met with current F_CPU settings. # define w_lowtime ((w1_nops + w_fixedlow) * 1000000) / (F_CPU / 1000) # if w_lowtime > 550 # error "Light_ws2812: Sorry, the clock speed is too low. Did you set F_CPU correctly?" # elif w_lowtime > 450 # warning "Light_ws2812: The timing is critical and may only work on WS2812B, not on WS2812(S)." # warning "Please consider a higher clockspeed, if possible" # endif # define w_nop1 "nop \n\t" # define w_nop2 "rjmp .+0 \n\t" # define w_nop4 w_nop2 w_nop2 # define w_nop8 w_nop4 w_nop4 # define w_nop16 w_nop8 w_nop8 static inline void ws2812_sendarray_mask(uint8_t *data, uint16_t datlen, uint8_t masklo, uint8_t maskhi) { uint8_t curbyte, ctr, sreg_prev; sreg_prev = SREG; cli(); while (datlen--) { curbyte = (*data++); asm volatile(" ldi %0,8 \n\t" "loop%=: \n\t" " out %2,%3 \n\t" // '1' [01] '0' [01] - re # if (w1_nops & 1) w_nop1 # endif # if (w1_nops & 2) w_nop2 # endif # if (w1_nops & 4) w_nop4 # endif # if (w1_nops & 8) w_nop8 # endif # if (w1_nops & 16) w_nop16 # endif " sbrs %1,7 \n\t" // '1' [03] '0' [02] " out %2,%4 \n\t" // '1' [--] '0' [03] - fe-low " lsl %1 \n\t" // '1' [04] '0' [04] # if (w2_nops & 1) w_nop1 # endif # if (w2_nops & 2) w_nop2 # endif # if (w2_nops & 4) w_nop4 # endif # if (w2_nops & 8) w_nop8 # endif # if (w2_nops & 16) w_nop16 # endif " out %2,%4 \n\t" // '1' [+1] '0' [+1] - fe-high # if (w3_nops & 1) w_nop1 # endif # if (w3_nops & 2) w_nop2 # endif # if (w3_nops & 4) w_nop4 # endif # if (w3_nops & 8) w_nop8 # endif # if (w3_nops & 16) w_nop16 # endif " dec %0 \n\t" // '1' [+2] '0' [+2] " brne loop%=\n\t" // '1' [+3] '0' [+4] : "=&d"(ctr) : "r"(curbyte), "I"(_SFR_IO_ADDR(PORTx_ADDRESS(RGBLIGHT_DI_PIN))), "r"(maskhi), "r"(masklo)); } SREG = sreg_prev; } void rgblight_call_driver(LED_TYPE *start_led, uint8_t num_leds) { DDRx_ADDRESS(RGBLIGHT_DI_PIN) |= pinmask(RGBLIGHT_DI_PIN); uint8_t masklo = ~(pinmask(RGBLIGHT_DI_PIN)) & PORTx_ADDRESS(RGBLIGHT_DI_PIN); uint8_t maskhi = pinmask(RGBLIGHT_DI_PIN) | PORTx_ADDRESS(RGBLIGHT_DI_PIN); ws2812_sendarray_mask((uint8_t *)start_led, num_leds * sizeof(LED_TYPE), masklo, maskhi); _delay_us(WS2812_TRST_US); } #endif #ifdef RGB_MATRIX_ENABLE bool process_record_kb(uint16_t keycode, keyrecord_t *record) { if (!process_record_user(keycode, record)) { return false; } if (record->event.pressed) { switch(keycode) { case RGB_MATRIX_TOGGLE: // toggle rgb matrix rgb_matrix_toggle(); return false; case RGB_MATRIX_MODE_INC: rgb_matrix_step(); return false; case RGB_MATRIX_MODE_DEC: rgb_matrix_step_reverse(); return false; case RGB_MATRIX_HUE_INC: rgb_matrix_increase_hue(); return false; case RGB_MATRIX_HUE_DEC: rgb_matrix_decrease_hue(); return false; case RGB_MATRIX_SAT_INC: rgb_matrix_increase_sat(); return false; case RGB_MATRIX_SAT_DEC: rgb_matrix_decrease_sat(); return false; case RGB_MATRIX_VAL_INC: rgb_matrix_increase_val(); return false; case RGB_MATRIX_VAL_DEC: rgb_matrix_decrease_val(); return false; default: break; } } return true; } #endif