/* Copyright 2020 ZSA Technology Labs, Inc <@zsa> * Copyright 2020 Jack Humbert * Copyright 2020 Christopher Courtney, aka Drashna Jael're (@drashna) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "voyager.h" #include "is31fl3731.h" #include "i2c_master.h" extern matrix_row_t matrix[MATRIX_ROWS]; // debounced values extern matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values static matrix_row_t raw_matrix_right[MATRIX_COLS]; #define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifndef VOYAGER_I2C_TIMEOUT # define VOYAGER_I2C_TIMEOUT 100 #endif extern bool mcp23018_leds[3]; extern bool is_launching; bool mcp23018_initd = false; // extern bool IS31FL3731_initd; static uint8_t mcp23018_reset_loop; // static uint8_t is31fl3731_reset_loop; uint8_t mcp23018_tx[3]; uint8_t mcp23018_rx[1]; void mcp23018_init(void) { i2c_init(); mcp23018_tx[0] = 0x00; // IODIRA mcp23018_tx[1] = 0b00000000; // A is output mcp23018_tx[2] = 0b00111111; // B is inputs if (MSG_OK == i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, VOYAGER_I2C_TIMEOUT)) { mcp23018_tx[0] = 0x0C; // GPPUA mcp23018_tx[1] = 0b10000000; // A is not pulled-up mcp23018_tx[2] = 0b11111111; // B is pulled-up wait_ms(5); if (MSG_OK == i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, VOYAGER_I2C_TIMEOUT)) { wait_ms(5); mcp23018_initd = is_launching = true; } } } bool io_expander_ready(void) { uint8_t tx[1] = {0x13}; if (MSG_OK == i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, tx[0], &tx[0], 1, VOYAGER_I2C_TIMEOUT)) { return true; } return false; } void matrix_init_custom(void) { // outputs setPinOutput(B10); setPinOutput(B11); setPinOutput(B12); setPinOutput(B13); setPinOutput(B14); setPinOutput(B15); // inputs setPinInputLow(A0); setPinInputLow(A1); setPinInputLow(A2); setPinInputLow(A3); setPinInputLow(A6); setPinInputLow(A7); setPinInputLow(B0); mcp23018_init(); } bool matrix_scan_custom(matrix_row_t current_matrix[]) { bool changed = false; // Attempt to reset the mcp23018 if it's not initialized if (!mcp23018_initd) { if (++mcp23018_reset_loop == 0) { // Since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans. This will be approx bit more frequent than once per second. if (io_expander_ready()) { // If we managed to initialize the mcp23018 - we need to reinitialize the matrix / layer state. During an electric discharge the i2c peripherals might be in a weird state. Giving a delay and resetting the MCU allows to recover from this. wait_ms(200); mcu_reset(); } } } // Scanning left and right side of the keyboard for key presses. // Left side is scanned by reading the gpio pins directly, right side is scanned by reading the mcp23018 registers. matrix_row_t data = 0; for (uint8_t row = 0; row <= ROWS_PER_HAND; row++) { // strobe row switch (row) { case 0: writePinHigh(B10); break; case 1: writePinHigh(B11); break; case 2: writePinHigh(B12); break; case 3: writePinHigh(B13); break; case 4: writePinHigh(B14); break; case 5: writePinHigh(B15); break; case 6: break; // Left hand has 6 rows } // Selecting the row on the right side of the keyboard. if (mcp23018_initd) { // select row mcp23018_tx[0] = 0x12; // GPIOA mcp23018_tx[1] = (0b01111111 & ~(1 << (row))) | ((uint8_t)!mcp23018_leds[2] << 7); // activate row mcp23018_tx[2] = ((uint8_t)!mcp23018_leds[1] << 6) | ((uint8_t)!mcp23018_leds[0] << 7); // activate row if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, VOYAGER_I2C_TIMEOUT)) { mcp23018_initd = false; } } // Reading the left side of the keyboard. if (row < ROWS_PER_HAND) { // i2c comm incur enough wait time if (!mcp23018_initd) { // need wait to settle pin state matrix_io_delay(); } // read col data data = ((readPin(A0) << 0) | (readPin(A1) << 1) | (readPin(A2) << 2) | (readPin(A3) << 3) | (readPin(A6) << 4) | (readPin(A7) << 5) | (readPin(B0) << 6)); // unstrobe row switch (row) { case 0: writePinLow(B10); break; case 1: writePinLow(B11); break; case 2: writePinLow(B12); break; case 3: writePinLow(B13); break; case 4: writePinLow(B14); break; case 5: writePinLow(B15); break; case 6: break; } if (current_matrix[row] != data) { current_matrix[row] = data; changed = true; } } // Reading the right side of the keyboard. if (mcp23018_initd) { for (uint16_t i = 0; i < IO_EXPANDER_OP_DELAY; i++) { __asm__("nop"); } mcp23018_tx[0] = 0x13; // GPIOB if (MSG_OK != i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx[0], &mcp23018_rx[0], 1, VOYAGER_I2C_TIMEOUT)) { mcp23018_initd = false; } data = ~(mcp23018_rx[0] & 0b00111111); for (uint16_t i = 0; i < IO_EXPANDER_OP_DELAY; i++) { __asm__("nop"); } } else { data = 0; } if (raw_matrix_right[row] != data) { raw_matrix_right[row] = data; changed = true; } } for (uint8_t row = 0; row < ROWS_PER_HAND; row++) { current_matrix[11 - row] = 0; for (uint8_t col = 0; col < MATRIX_COLS; col++) { current_matrix[11 - row] |= ((raw_matrix_right[6 - col] & (1 << row) ? 1 : 0) << col); } } return changed; } // DO NOT REMOVE // Needed for proper wake/sleep void matrix_power_up(void) { bool temp_launching = is_launching; matrix_init_custom(); is_launching = temp_launching; if (!temp_launching) { STATUS_LED_1(false); STATUS_LED_2(false); STATUS_LED_3(false); STATUS_LED_4(false); } // initialize matrix state: all keys off for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = 0; } } bool is_transport_connected(void) { return mcp23018_initd; }