/* Copyright 2012-2017 Jun Wako, Jack Humbert This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #if defined(__AVR__) #include <avr/io.h> #endif #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "timer.h" #include "sx60.h" /* Set 0 if debouncing isn't needed */ #ifndef DEBOUNCING_DELAY # define DEBOUNCING_DELAY 5 #endif #if (DEBOUNCING_DELAY > 0) static uint16_t debouncing_time; static bool debouncing = false; #endif #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif #ifdef MATRIX_MASKED extern const matrix_row_t matrix_mask[]; #endif static const uint8_t col_pins[ATMEGA_COLS] = MATRIX_COL_PINS; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static uint8_t mcp23018_reset_loop; static void init_cols(void); static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row); static void unselect_rows(void); static void select_row(uint8_t row); __attribute__ ((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__ ((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { /* To use PORTF disable JTAG with writing JTD bit twice within four cycles. */ #if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega32U4__)) MCUCR |= _BV(JTD); MCUCR |= _BV(JTD); #endif mcp23018_status = true; /* initialize row and col */ unselect_rows(); init_cols(); /* initialize matrix state: all keys off */ for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } matrix_init_quantum(); } uint8_t matrix_scan(void) { if (mcp23018_status) { /* if there was an error */ if (++mcp23018_reset_loop == 0) { /* since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans this will be approx bit more frequent than once per second */ print("trying to reset mcp23018\n"); mcp23018_status = init_mcp23018(); if (mcp23018_status) { print("left side not responding\n"); } else { print("left side attached\n"); } } } /* Set row, read cols */ for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) { # if (DEBOUNCING_DELAY > 0) bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row); if (matrix_changed) { debouncing = true; debouncing_time = timer_read(); } # else read_cols_on_row(matrix, current_row); # endif } # if (DEBOUNCING_DELAY > 0) if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = matrix_debouncing[i]; } debouncing = false; } # endif matrix_scan_quantum(); return 1; } bool matrix_is_modified(void) { #if (DEBOUNCING_DELAY > 0) if (debouncing) return false; #endif return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { /* Matrix mask lets you disable switches in the returned matrix data. For example, if you have a switch blocker installed and the switch is always pressed. */ #ifdef MATRIX_MASKED return matrix[row] & matrix_mask[row]; #else return matrix[row]; #endif } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; } static void init_cols(void) { for(uint8_t x = 0; x < ATMEGA_COLS; x++) { uint8_t pin = col_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); /* IN */ _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); /* HI */ } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { /* Store last value of row prior to reading */ matrix_row_t last_row_value = current_matrix[current_row]; /* Clear data in matrix row */ current_matrix[current_row] = 0; /* Select row and wait for row selecton to stabilize */ select_row(current_row); wait_us(30); if (mcp23018_status) { /* if there was an error */ return 0; } else { uint16_t data = 0; mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out; mcp23018_status = i2c_start(I2C_ADDR_READ); if (mcp23018_status) goto out; data = i2c_readNak(); data = ~data; out: i2c_stop(); current_matrix[current_row] |= (data << 8); } /* For each col... */ for(uint8_t col_index = 0; col_index < ATMEGA_COLS; col_index++) { /* Select the col pin to read (active low) */ uint8_t pin = col_pins[col_index]; uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)); /* Populate the matrix row with the state of the col pin */ current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index); } /* Unselect row */ unselect_rows(); return (last_row_value != current_matrix[current_row]); } static void select_row(uint8_t row) { if (mcp23018_status) { /* if there was an error do nothing */ } else { /* set active row low : 0 set active row output : 1 set other rows hi-Z : 1 */ mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; mcp23018_status = i2c_write(GPIOB); if (mcp23018_status) goto out; mcp23018_status = i2c_write(0xFF & ~(1<<abs(row-4))); if (mcp23018_status) goto out; out: i2c_stop(); } uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); /* OUT */ _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); /* LOW */ } static void unselect_rows(void) { for(uint8_t x = 0; x < MATRIX_ROWS; x++) { uint8_t pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); /* IN */ _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); /* HI */ } }