/* Copyright 2018 Jack Humbert * Copyright 2015 ZSA Technology Labs Inc (@zsa) * Copyright 2020 Christopher Courtney, aka Drashna Jael're (@drashna) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "ez.h" #include #include keyboard_config_t keyboard_config; #ifdef RGB_MATRIX_ENABLE const is31_led __flash g_is31_leds[DRIVER_LED_TOTAL] = { /* Refer to IS31 manual for these locations * driver * | R location * | | G location * | | | B location * | | | | */ {0, B_12, A_12, C_12}, {0, B_11, A_11, C_11}, {0, B_10, A_10, C_10}, {0, B_9, A_9, C_9}, {0, B_8, A_8, C_8}, {0, B_7, A_7, C_7}, {0, H_12, G_12, I_12}, {0, H_11, G_11, I_11}, {0, H_10, G_10, I_10}, {0, H_9, G_9, I_9}, {0, H_8, G_8, I_8}, {0, H_7, G_7, I_7}, {0, B_6, A_6, C_6}, {0, B_5, A_5, C_5}, {0, B_4, A_4, C_4}, {0, B_3, A_3, C_3}, {0, B_2, A_2, C_2}, {0, B_1, A_1, C_1}, {0, H_6, G_6, I_6}, {0, H_5, G_5, I_5}, {0, H_4, G_4, I_4}, {0, H_3, G_3, I_3}, {0, H_2, G_2, I_2}, {0, H_1, G_1, I_1}, {0, E_12, D_12, F_12}, {0, E_11, D_11, F_11}, {0, E_10, D_10, F_10}, {0, E_9, D_9, F_9}, {0, E_8, D_8, F_8}, {0, E_7, D_7, F_7}, {0, K_12, J_12, L_12}, {0, K_11, J_11, L_11}, {0, K_10, J_10, L_10}, {0, K_9, J_9, L_9}, {0, K_8, J_8, L_8}, {0, K_7, J_7, L_7}, {0, E_6, D_6, F_6}, {0, E_5, D_5, F_5}, {0, E_4, D_4, F_4}, {0, E_3, D_3, F_3}, {0, E_2, D_2, F_2}, {0, E_1, D_1, F_1}, {0, K_6, J_6, L_6}, {0, K_5, J_5, L_5}, {0, K_4, J_4, L_4}, {0, K_3, J_3, L_3}, {0, K_2, J_2, L_2}, }; led_config_t g_led_config = { { { 0, 1, 2, 3, 4, 5 }, { 12, 13, 14, 15, 16, 17 }, { 24, 25, 26, 27, 28, 29 }, { 36, 37, 38, 45, 46, NO_LED }, { 6, 7, 8, 9, 10, 11 }, { 18, 19, 20, 21, 22, 23 }, { 30, 31, 32, 33, 34, 35 }, { 42, 43, 44, 39, 40, 41 } }, { { 0, 0 }, { 20, 0 }, { 40, 0 }, { 61, 0 }, { 81, 0 }, { 101, 0 }, { 122, 0 }, { 142, 0 }, { 162, 0 }, { 183, 0 }, { 203, 0 }, { 223, 0 }, { 0, 21 }, { 20, 21 }, { 40, 21 }, { 61, 21 }, { 81, 21 }, { 101, 21 }, { 122, 21 }, { 142, 21 }, { 162, 21 }, { 183, 21 }, { 203, 21 }, { 223, 21 }, { 0, 42 }, { 20, 42 }, { 40, 42 }, { 61, 42 }, { 81, 42 }, { 101, 42 }, { 122, 42 }, { 142, 42 }, { 162, 42 }, { 183, 42 }, { 203, 42 }, { 223, 42 }, { 0, 63 }, { 20, 63 }, { 40, 63 }, { 61, 63 }, { 81, 63 }, { 111, 63 }, { 142, 63 }, { 162, 63 }, { 183, 63 }, { 203, 63 }, { 223, 63 } }, { 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1 } }; void suspend_power_down_kb(void) { rgb_matrix_set_color_all(0, 0, 0); rgb_matrix_set_suspend_state(true); suspend_power_down_user(); } void suspend_wakeup_init_kb(void) { rgb_matrix_set_suspend_state(false); suspend_wakeup_init_user(); } void keyboard_post_init_kb(void) { rgb_matrix_enable_noeeprom(); keyboard_post_init_user(); } #endif /* Left B9 Right B8 */ // See http://jared.geek.nz/2013/feb/linear-led-pwm static uint16_t cie_lightness(uint16_t v) { if (v <= 5243) // if below 8% of max return v / 9; // same as dividing by 900% else { uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare // to get a useful result with integer division, we shift left in the expression above // and revert what we've done again after squaring. y = y * y * y >> 8; if (y > 0xFFFFUL) // prevent overflow return 0xFFFFU; else return (uint16_t) y; } } static PWMConfig pwmCFG = { 0xFFFF,/* PWM clock frequency */ 256,/* initial PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */ NULL, { {PWM_OUTPUT_DISABLED, NULL}, /* channel 0 -> TIM1-CH1 = PA8 */ {PWM_OUTPUT_DISABLED, NULL}, /* channel 1 -> TIM1-CH2 = PA9 */ {PWM_OUTPUT_ACTIVE_HIGH, NULL}, {PWM_OUTPUT_ACTIVE_HIGH, NULL} }, 0, /* HW dependent part.*/ 0 }; static uint32_t planck_ez_right_led_duty; static uint32_t planck_ez_left_led_duty; void planck_ez_right_led_level(uint8_t level) { planck_ez_right_led_duty = (uint32_t)(cie_lightness(0xFFFF * (uint32_t) level / 255)); if (level == 0) { // Turn backlight off pwmDisableChannel(&PWMD4, 2); } else { // Turn backlight on pwmEnableChannel(&PWMD4, 2, PWM_FRACTION_TO_WIDTH(&PWMD4,0xFFFF,planck_ez_right_led_duty)); } } void planck_ez_right_led_on(void){ pwmEnableChannel(&PWMD4, 2, PWM_FRACTION_TO_WIDTH(&PWMD4,0xFFFF,planck_ez_right_led_duty)); } void planck_ez_right_led_off(void){ pwmDisableChannel(&PWMD4, 2); } void planck_ez_left_led_level(uint8_t level) { planck_ez_left_led_duty = (uint32_t)(cie_lightness(0xFFFF * (uint32_t) level / 255)); if (level == 0) { // Turn backlight off pwmDisableChannel(&PWMD4, 3); } else { // Turn backlight on pwmEnableChannel(&PWMD4, 3, PWM_FRACTION_TO_WIDTH(&PWMD4,0xFFFF,planck_ez_left_led_duty)); } } void planck_ez_left_led_on(void){ pwmEnableChannel(&PWMD4, 3, PWM_FRACTION_TO_WIDTH(&PWMD4,0xFFFF,planck_ez_left_led_duty)); } void planck_ez_left_led_off(void){ pwmDisableChannel(&PWMD4, 3); } void led_initialize_hardware(void) { pwmStart(&PWMD4, &pwmCFG); // set up defaults planck_ez_right_led_level((uint8_t)keyboard_config.led_level * 255 / 4 ); palSetPadMode(GPIOB, 8, PAL_MODE_ALTERNATE(2)); planck_ez_left_led_level((uint8_t)keyboard_config.led_level * 255 / 4 ); palSetPadMode(GPIOB, 9, PAL_MODE_ALTERNATE(2)); // turn LEDs off by default planck_ez_left_led_off(); planck_ez_right_led_off(); } void keyboard_pre_init_kb(void) { if (!eeconfig_is_enabled()) { eeconfig_init(); } // read kb settings from eeprom keyboard_config.raw = eeconfig_read_kb(); #ifdef RGB_MATRIX_ENABLE if (keyboard_config.rgb_matrix_enable) { rgb_matrix_set_flags(LED_FLAG_ALL); } else { rgb_matrix_set_flags(LED_FLAG_NONE); } #endif led_initialize_hardware(); keyboard_pre_init_user(); } void eeconfig_init_kb(void) { // EEPROM is getting reset! keyboard_config.raw = 0; keyboard_config.rgb_matrix_enable = true; keyboard_config.led_level = 4; eeconfig_update_kb(keyboard_config.raw); eeconfig_init_user(); } layer_state_t layer_state_set_kb(layer_state_t state) { planck_ez_left_led_off(); planck_ez_right_led_off(); state = layer_state_set_user(state); uint8_t layer = biton32(state); switch (layer) { case 1: planck_ez_left_led_on(); break; case 2: planck_ez_right_led_on(); break; case 3: planck_ez_right_led_on(); planck_ez_left_led_on(); break; default: break; } return state; } bool process_record_kb(uint16_t keycode, keyrecord_t *record) { switch (keycode) { case LED_LEVEL: if (record->event.pressed) { keyboard_config.led_level++; if (keyboard_config.led_level > 4) { keyboard_config.led_level = 0; } planck_ez_right_led_level((uint8_t)keyboard_config.led_level * 255 / 4 ); planck_ez_left_led_level((uint8_t)keyboard_config.led_level * 255 / 4 ); eeconfig_update_kb(keyboard_config.raw); layer_state_set_kb(layer_state); } break; #ifdef RGB_MATRIX_ENABLE case TOGGLE_LAYER_COLOR: if (record->event.pressed) { keyboard_config.disable_layer_led ^= 1; if (keyboard_config.disable_layer_led) rgb_matrix_set_color_all(0, 0, 0); eeconfig_update_kb(keyboard_config.raw); } break; case RGB_TOG: if (record->event.pressed) { switch (rgb_matrix_get_flags()) { case LED_FLAG_ALL: { rgb_matrix_set_flags(LED_FLAG_NONE); keyboard_config.rgb_matrix_enable = false; rgb_matrix_set_color_all(0, 0, 0); } break; default: { rgb_matrix_set_flags(LED_FLAG_ALL); keyboard_config.rgb_matrix_enable = true; } break; } eeconfig_update_kb(keyboard_config.raw); } return false; #endif } return process_record_user(keycode, record); } #ifdef AUDIO_ENABLE bool music_mask_kb(uint16_t keycode) { switch (keycode) { case QK_LAYER_TAP ... QK_ONE_SHOT_LAYER_MAX: case QK_LAYER_TAP_TOGGLE ... QK_LAYER_MOD_MAX: case QK_MOD_TAP ... QK_MOD_TAP_MAX: case AU_ON ... MUV_DE: case RESET: case EEP_RST: return false; default: return music_mask_user(keycode); } } #endif #ifdef ORYX_ENABLE static uint16_t loops = 0; static bool is_on = false; #endif #ifdef DYNAMIC_MACRO_ENABLE static bool is_dynamic_recording = false; static uint16_t dynamic_loop_timer; void dynamic_macro_record_start_user(void) { is_dynamic_recording = true; dynamic_loop_timer = timer_read(); planck_ez_left_led_on(); } void dynamic_macro_record_end_user(int8_t direction) { is_dynamic_recording = false; layer_state_set_kb(layer_state); } #endif void matrix_scan_kb(void) { #ifdef ORYX_ENABLE if(webusb_state.pairing == true) { if(loops == 0) { //lights off } if(loops % WEBUSB_BLINK_STEPS == 0) { if(is_on) { planck_ez_left_led_on(); planck_ez_right_led_off(); } else { planck_ez_left_led_off(); planck_ez_right_led_on(); } is_on ^= 1; } if(loops > WEBUSB_BLINK_END * 2) { webusb_state.pairing = false; loops = 0; planck_ez_left_led_off(); planck_ez_right_led_off(); } loops++; } else if(loops > 0) { loops = 0; planck_ez_left_led_off(); planck_ez_right_led_off(); } #endif #ifdef DYNAMIC_MACRO_ENABLE if (is_dynamic_recording) { if (timer_elapsed(dynamic_loop_timer) > 1) { static uint8_t counter; counter++; if (counter > 100) { planck_ez_left_led_on(); } else { planck_ez_left_led_off(); } dynamic_loop_timer = timer_read(); } } #endif matrix_scan_user(); }