/* Copyright 2020 ZSA Technology Labs, Inc <@zsa> * Copyright 2020 Jack Humbert <jack.humb@gmail.com> * Copyright 2020 Christopher Courtney <drashna@live.com> (@drashna) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #include <string.h> #include <hal.h> #include "timer.h" #include "wait.h" #include "print.h" #include "matrix.h" #include "action.h" #include "keycode.h" #include <string.h> #include "moonlander.h" #include "i2c_master.h" #include "debounce.h" /* #define MATRIX_ROW_PINS { B10, B11, B12, B13, B14, B15 } outputs #define MATRIX_COL_PINS { A0, A1, A2, A3, A6, A7, B0 } inputs */ /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static matrix_row_t matrix_debouncing_right[MATRIX_COLS]; static bool debouncing = false; static uint16_t debouncing_time = 0; static bool debouncing_right = false; static uint16_t debouncing_time_right = 0; #define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifndef MATRIX_IO_DELAY # define MATRIX_IO_DELAY 20 #endif extern bool mcp23018_leds[3]; extern bool is_launching; __attribute__((weak)) void matrix_init_user(void) {} __attribute__((weak)) void matrix_scan_user(void) {} __attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__((weak)) void matrix_io_delay(void) { wait_us(MATRIX_IO_DELAY); } bool mcp23018_initd = false; static uint8_t mcp23018_reset_loop; uint8_t mcp23018_tx[3]; uint8_t mcp23018_rx[1]; void mcp23018_init(void) { i2c_init(); // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 } outputs // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs mcp23018_tx[0] = 0x00; // IODIRA mcp23018_tx[1] = 0b00000000; // A is output mcp23018_tx[2] = 0b00111111; // B is inputs if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, I2C_TIMEOUT)) { dprintf("error hori\n"); } else { mcp23018_tx[0] = 0x0C; // GPPUA mcp23018_tx[1] = 0b10000000; // A is not pulled-up mcp23018_tx[2] = 0b11111111; // B is pulled-up if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, I2C_TIMEOUT)) { dprintf("error hori\n"); } else { mcp23018_initd = is_launching = true; } } } void matrix_init(void) { dprintf("matrix init\n"); // debug_matrix = true; // outputs setPinOutput(B10); setPinOutput(B11); setPinOutput(B12); setPinOutput(B13); setPinOutput(B14); setPinOutput(B15); // inputs setPinInputLow(A0); setPinInputLow(A1); setPinInputLow(A2); setPinInputLow(A3); setPinInputLow(A6); setPinInputLow(A7); setPinInputLow(B0); memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t)); memset(matrix_debouncing, 0, MATRIX_ROWS * sizeof(matrix_row_t)); memset(matrix_debouncing_right, 0, MATRIX_COLS * sizeof(matrix_row_t)); mcp23018_init(); matrix_init_quantum(); } uint8_t matrix_scan(void) { bool changed = false; matrix_row_t data = 0; // actual matrix for (uint8_t row = 0; row < ROWS_PER_HAND; row++) { // strobe row switch (row) { case 0: writePinHigh(B10); break; case 1: writePinHigh(B11); break; case 2: writePinHigh(B12); break; case 3: writePinHigh(B13); break; case 4: writePinHigh(B14); break; case 5: writePinHigh(B15); break; } // need wait to settle pin state matrix_io_delay(); // read col data data = ( (readPin(A0) << 0 ) | (readPin(A1) << 1 ) | (readPin(A2) << 2 ) | (readPin(A3) << 3 ) | (readPin(A6) << 4 ) | (readPin(A7) << 5 ) | (readPin(B0) << 6 ) ); // unstrobe row switch (row) { case 0: writePinLow(B10); break; case 1: writePinLow(B11); break; case 2: writePinLow(B12); break; case 3: writePinLow(B13); break; case 4: writePinLow(B14); break; case 5: writePinLow(B15); break; } if (matrix_debouncing[row] != data) { matrix_debouncing[row] = data; debouncing = true; debouncing_time = timer_read(); changed = true; } } for (uint8_t row = 0; row <= ROWS_PER_HAND; row++) { // right side if (!mcp23018_initd) { if (++mcp23018_reset_loop == 0) { // if (++mcp23018_reset_loop >= 1300) { // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans // this will be approx bit more frequent than once per second print("trying to reset mcp23018\n"); mcp23018_init(); if (!mcp23018_initd) { print("left side not responding\n"); } else { print("left side attached\n"); #ifdef RGB_MATRIX_ENABLE rgb_matrix_init(); #endif } } } // #define MCP23_ROW_PINS { GPB5, GBP4, GBP3, GBP2, GBP1, GBP0 } outputs // #define MCP23_COL_PINS { GPA0, GBA1, GBA2, GBA3, GBA4, GBA5, GBA6 } inputs // select row mcp23018_tx[0] = 0x12; // GPIOA mcp23018_tx[1] = (0b01111111 & ~(1 << (row))) | ((uint8_t)!mcp23018_leds[2] << 7); // activate row mcp23018_tx[2] = ((uint8_t)!mcp23018_leds[1] << 6) | ((uint8_t)!mcp23018_leds[0] << 7); // activate row if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, I2C_TIMEOUT)) { dprintf("error hori\n"); mcp23018_initd = false; } // read col mcp23018_tx[0] = 0x13; // GPIOB if (MSG_OK != i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx[0], &mcp23018_rx[0], 1, I2C_TIMEOUT)) { dprintf("error vert\n"); mcp23018_initd = false; } data = ~(mcp23018_rx[0] & 0b00111111); // data = 0x01; if (matrix_debouncing_right[row] != data) { matrix_debouncing_right[row] = data; debouncing_right = true; debouncing_time_right = timer_read(); changed = true; } } if (debouncing && timer_elapsed(debouncing_time) > DEBOUNCE) { for (int row = 0; row < ROWS_PER_HAND; row++) { matrix[row] = matrix_debouncing[row]; } debouncing = false; } if (debouncing_right && timer_elapsed(debouncing_time_right) > DEBOUNCE && mcp23018_initd) { for (int row = 0; row < ROWS_PER_HAND; row++) { matrix[11 - row] = 0; for (int col = 0; col < MATRIX_COLS; col++) { matrix[11 - row] |= ((matrix_debouncing_right[6 - col] & (1 << row) ? 1 : 0) << col); } } debouncing_right = false; } matrix_scan_quantum(); return (uint8_t)changed; } bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & (1 << col)); } matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { dprintf("\nr/c 01234567\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { dprintf("%X0: ", row); matrix_row_t data = matrix_get_row(row); for (int col = 0; col < MATRIX_COLS; col++) { if (data & (1 << col)) dprintf("1"); else dprintf("0"); } dprintf("\n"); } } // DO NOT REMOVE // Needed for proper wake/sleep void matrix_power_up(void) { bool temp_launching = is_launching; // outputs setPinOutput(B10); setPinOutput(B11); setPinOutput(B12); setPinOutput(B13); setPinOutput(B14); setPinOutput(B15); // inputs setPinInputLow(A0); setPinInputLow(A1); setPinInputLow(A2); setPinInputLow(A3); setPinInputLow(A6); setPinInputLow(A7); setPinInputLow(B0); mcp23018_init(); is_launching = temp_launching; if (!is_launching) { ML_LED_1(false); ML_LED_2(false); ML_LED_3(false); ML_LED_4(false); ML_LED_5(false); ML_LED_6(false); } // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; } }