/* Copyright 2012 Jun Wako Copyright 2014 Jack Humbert Copyright 2019 @filoxo This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #if defined(__AVR__) #include <avr/io.h> #endif #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "timer.h" #include "honeycomb.h" #include "pointing_device.h" #include "report.h" #include "uart.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; //extern int8_t encoderValue; int8_t encoderValue = 0; __attribute__ ((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__ ((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { matrix_init_quantum(); uart_init(1000000); } uint8_t matrix_scan(void) { uint32_t timeout = 0; // The 's' character requests the RF slave to send the matrix uart_write('s'); // Trust the external keystates entirely, erase the last data uint8_t uart_data[4] = {0}; // There are 3 bytes corresponding to the data, and a checksum for (uint8_t i = 0; i < 4; i++) { // Wait for the serial data, timeout if it's been too long // This only happened in testing with a loose wire, but does no // harm to leave it in here while(!uart_available()){ timeout++; if (timeout > 10000){ xprintf("\r\nTime out in keyboard."); break; } } uart_data[i] = uart_read(); } // Check for the end packet, it's our checksum. // Will only be a match if the correct bytes were recieved if (uart_data[3] == (uart_data[0] ^ uart_data[1] ^ uart_data[2])) { // This is an arbitrary checksum calculated by XORing all the data. // Transferring the keystates to the QMK matrix variable /* ASSUMING MSB FIRST */ matrix[0] = ((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1]); encoderValue += (int8_t) uart_data[2]; if ((uart_data[0] | uart_data[1] | uart_data[2])!=0){ xprintf("\r\n0x%0X%02X%02X",uart_data[0],uart_data[1], uart_data[2]); } /* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */ for (uint8_t i = 0; i < MATRIX_ROWS; i++) { // I've unpacked these into the mirror image of what QMK expects them to be, so... matrix[i] = bitrev16(matrix[i]); // So I'll reverse it, and this should be fine now. } // A mouse report for scrolling would go here, but I don't plan on doing scrolling with the encoder. So. report_mouse_t currentReport = {}; /* currentReport = pointing_device_get_report(); //mouseReport.x = 127 max -127 min currentReport.x = (int8_t) uart_data[6]; //mouseReport.y = 127 max -127 min currentReport.y = (int8_t) uart_data[7]; //mouseReport.v = 127 max -127 min (scroll vertical) currentReport.v = (int8_t) uart_data[8]; //mouseReport.h = 127 max -127 min (scroll horizontal) currentReport.h = (int8_t) uart_data[9]; */ /* currentReport.x = 0; currentReport.y = 0; currentReport.v = 0; currentReport.h = 0;*/ pointing_device_set_report(currentReport); } else { xprintf("\r\nRequested packet, data 3 was %d",uart_data[3]); } matrix_scan_quantum(); return 1; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { print_hex8(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; }