/* Copyright 2019 worthlessowl based on work by: Jun Wako <wakojun@gmail.com> Cole Markham <cole@ccmcomputing.net> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include "owlet60.h" #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "config.h" #include "timer.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_select_pins[3] = MATRIX_COL_SELECT_PINS; static const uint8_t dat_pin = MATRIX_COL_DATA_PIN; /* matrix state(1:on, 0:off) */ static matrix_row_t raw_matrix[MATRIX_ROWS]; //raw values static matrix_row_t matrix[MATRIX_ROWS]; //raw values /* 2d array containing binary representation of its index */ static const uint8_t num_in_binary[8][3] = { {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}, }; static void select_col_analog(uint8_t col); static void mux_pin_control(const uint8_t binary[]); void debounce_init(uint8_t num_rows); void debounce(matrix_row_t raw[], matrix_row_t cooked[], uint8_t num_rows, bool changed); __attribute__ ((weak)) void matrix_init_user(void) {} __attribute__ ((weak)) void matrix_scan_user(void) {} __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { // Matrix mask lets you disable switches in the returned matrix data. For example, if you have a // switch blocker installed and the switch is always pressed. #ifdef MATRIX_MASKED return matrix[row] & matrix_mask[row]; #else return matrix[row]; #endif } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; } // uses standard row code static void select_row(uint8_t row) { setPinOutput(row_pins[row]); writePinLow(row_pins[row]); } static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); } static void unselect_rows(void) { for(uint8_t x = 0; x < MATRIX_ROWS; x++) { setPinInputHigh(row_pins[x]); } } static void init_pins(void) { // still need some fixing, this might not work unselect_rows(); // with the loop /* for (uint8_t x = 0; x < MATRIX_COLS; x++) { setPinInputHigh(col_pins[x]); } */ setPinInputHigh(dat_pin); } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[current_row]; // Clear data in matrix row current_matrix[current_row] = 0; // Select row and wait for row selecton to stabilize select_row(current_row); wait_us(30); // For each col... for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { // Select the col pin to read (active low) select_col_analog(col_index); wait_us(30); uint8_t pin_state = readPin(dat_pin); // Populate the matrix row with the state of the col pin current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index); } // Unselect row unselect_row(current_row); return (last_row_value != current_matrix[current_row]); } void matrix_init(void) { // initialize key pins init_pins(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { raw_matrix[i] = 0; matrix[i] = 0; } debounce_init(MATRIX_ROWS); matrix_init_quantum(); setPinInput(D5); writePinLow(D5); setPinInput(B0); writePinLow(B0); } // modified for per col read matrix scan uint8_t matrix_scan(void) { bool changed = false; for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) { changed |= read_cols_on_row(raw_matrix, current_row); } debounce(raw_matrix, matrix, MATRIX_ROWS, changed); matrix_scan_quantum(); return (uint8_t)changed; } /* uint8_t matrix_scan(void) { bool changed = false; #if (DIODE_DIRECTION == COL2ROW) // Set row, read cols for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) { changed |= read_cols_on_row(raw_matrix, current_row); } #endif debounce(raw_matrix, matrix, MATRIX_ROWS, changed); matrix_scan_quantum(); return (uint8_t)changed; } */ static void select_col_analog(uint8_t col) { switch(col) { case 0: mux_pin_control(num_in_binary[0]); break; case 1: mux_pin_control(num_in_binary[1]); break; case 2: mux_pin_control(num_in_binary[2]); break; case 3: mux_pin_control(num_in_binary[3]); break; case 4: mux_pin_control(num_in_binary[4]); break; case 5: mux_pin_control(num_in_binary[5]); break; case 6: mux_pin_control(num_in_binary[6]); break; case 7: mux_pin_control(num_in_binary[7]); break; default: break; } } static void mux_pin_control(const uint8_t binary[]) { // set pin0 setPinOutput(col_select_pins[0]); if(binary[2] == 0) { writePinLow(col_select_pins[0]); } else { writePinHigh(col_select_pins[0]); } // set pin1 setPinOutput(col_select_pins[1]); if(binary[1] == 0) { writePinLow(col_select_pins[1]); } else { writePinHigh(col_select_pins[1]); } // set pin2 setPinOutput(col_select_pins[2]); if(binary[0] == 0) { writePinLow(col_select_pins[2]); } else { writePinHigh(col_select_pins[2]); } }