/* Copyright 2012 Jun Wako <wakojun@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #include "util.h" #include "matrix.h" #include "debounce.h" #include "quantum.h" #include "split_util.h" #include "config.h" #include "transport.h" #define ERROR_DISCONNECT_COUNT 5 #define ROWS_PER_HAND (MATRIX_ROWS / 2) static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values static matrix_row_t matrix[MATRIX_ROWS]; // debounced values // row offsets for each hand uint8_t thisHand, thatHand; // user-defined overridable functions __attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__((weak)) void matrix_init_user(void) {} __attribute__((weak)) void matrix_scan_user(void) {} __attribute__((weak)) void matrix_slave_scan_user(void) {} matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) {} static inline void setPinOutput_writeLow(pin_t pin) { ATOMIC_BLOCK_FORCEON { setPinOutput(pin); writePinLow(pin); } } static inline void setPinInputHigh_atomic(pin_t pin) { ATOMIC_BLOCK_FORCEON { setPinInputHigh(pin); } } // matrix code static void select_row(uint8_t row) { setPinOutput_writeLow(row_pins[row]); } static void unselect_row(uint8_t row) { setPinInputHigh_atomic(row_pins[row]); } static void unselect_rows(void) { for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { setPinInputHigh_atomic(row_pins[x]); } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Start with a clear matrix row matrix_row_t current_row_value = 0; // Select row select_row(current_row); wait_us(30); // For each col... for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { // Select the col pin to read (active low) uint8_t pin_state = readPin(col_pins[col_index]); // Populate the matrix row with the state of the col pin current_row_value |= pin_state ? 0 : (MATRIX_ROW_SHIFTER << col_index); } // Unselect row unselect_row(current_row); if (current_row + 1 < MATRIX_ROWS) { wait_us(30); // wait for row signal to go HIGH } // If the row has changed, store the row and return the changed flag. if (current_matrix[current_row] != current_row_value) { current_matrix[current_row] = current_row_value; return true; } return false; } static void select_col(uint8_t col) { setPinOutput_writeLow(col_pins[col]); } static void unselect_col(uint8_t col) { setPinInputHigh_atomic(col_pins[col]); } static void unselect_cols(void) { for (uint8_t x = 0; x < MATRIX_COLS; x++) { setPinInputHigh_atomic(col_pins[x]); } } static void init_pins(void) { unselect_rows(); for (uint8_t x = 0; x < MATRIX_COLS; x++) { setPinInputHigh_atomic(col_pins[x]); } unselect_cols(); for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { setPinInputHigh_atomic(row_pins[x]); } } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; // Select col select_col(current_col); wait_us(30); // For each row... for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[row_index]; matrix_row_t current_row_value = last_row_value; // Check row pin state if (readPin(row_pins[row_index]) == 0) { // Pin LO, set col bit current_row_value |= (MATRIX_ROW_SHIFTER << current_col); } else { // Pin HI, clear col bit current_row_value &= ~(MATRIX_ROW_SHIFTER << current_col); } // Determine if the matrix changed state if ((last_row_value != current_row_value)) { matrix_changed |= true; current_matrix[row_index] = current_row_value; } } // Unselect col unselect_col(current_col); if (current_col + 1 < MATRIX_COLS) { wait_us(30); // wait for col signal to go HIGH } return matrix_changed; } void matrix_init(void) { split_pre_init(); // Set pinout for right half if pinout for that half is defined if (!isLeftHand) { #ifdef DIRECT_PINS_RIGHT const pin_t direct_pins_right[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { for (uint8_t j = 0; j < MATRIX_COLS; j++) { direct_pins[i][j] = direct_pins_right[i][j]; } } #endif #ifdef MATRIX_ROW_PINS_RIGHT const pin_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { row_pins[i] = row_pins_right[i]; } #endif #ifdef MATRIX_COL_PINS_RIGHT const pin_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_COLS; i++) { col_pins[i] = col_pins_right[i]; } #endif } thisHand = isLeftHand ? 0 : (ROWS_PER_HAND); thatHand = ROWS_PER_HAND - thisHand; // initialize key pins init_pins(); // initialize matrix state: all keys off for (uint8_t i = 0; i < MATRIX_ROWS; i++) { raw_matrix[i] = 0; matrix[i] = 0; } debounce_init(ROWS_PER_HAND); matrix_init_quantum(); split_post_init(); } bool matrix_post_scan(void) { bool changed = false; if (is_keyboard_master()) { static uint8_t error_count; matrix_row_t slave_matrix[ROWS_PER_HAND] = {0}; if (!transport_master(matrix + thisHand, slave_matrix)) { error_count++; if (error_count > ERROR_DISCONNECT_COUNT) { // reset other half if disconnected for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[thatHand + i] = 0; slave_matrix[i] = 0; } changed = true; } } else { error_count = 0; for (int i = 0; i < ROWS_PER_HAND; ++i) { if (matrix[thatHand + i] != slave_matrix[i]) { matrix[thatHand + i] = slave_matrix[i]; changed = true; } } } matrix_scan_quantum(); } else { transport_slave(matrix + thatHand, matrix + thisHand); matrix_slave_scan_user(); } return changed; } uint8_t matrix_scan(void) { bool local_changed = false; static matrix_row_t temp_raw_matrix[MATRIX_ROWS]; // temp raw values // Set row, read cols for (uint8_t current_row = 0; current_row < ROWS_PER_HAND/2; current_row++) { local_changed |= read_cols_on_row(raw_matrix, current_row); } // Set col, read rows for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { local_changed |= read_rows_on_col(temp_raw_matrix, current_col); //Updated key matrix on lines 6-10 (or lines 16-20) if(local_changed) { for (uint8_t i = ROWS_PER_HAND/2; i < ROWS_PER_HAND; i++) { raw_matrix[i] = temp_raw_matrix[i]; } } } debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, local_changed); bool remote_changed = matrix_post_scan(); return (uint8_t)(local_changed || remote_changed); }