/* Copyright 2012 Jun Wako Copyright 2014 Jack Humbert This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #if defined(__AVR__) #include <avr/io.h> #endif #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "timer.h" #include "dichotomy.h" #include "pointing_device.h" #include "report.h" #include "uart.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define ROW_SHIFTER ((uint32_t)1) #endif #define MAIN_ROWMASK 0xFFF0; #define LOWER_ROWMASK 0x3FC0; #define UART_MATRIX_RESPONSE_TIMEOUT 10000 /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; __attribute__ ((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__ ((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { matrix_init_quantum(); uart_init(1000000); } uint8_t matrix_scan(void) { uint32_t timeout = 0; //the s character requests the RF slave to send the matrix uart_write('s'); //trust the external keystates entirely, erase the last data uint8_t uart_data[11] = {0}; //there are 10 bytes corresponding to 10 columns, and an end byte for (uint8_t i = 0; i < 11; i++) { //wait for the serial data, timeout if it's been too long //this only happened in testing with a loose wire, but does no //harm to leave it in here while(!uart_available()){ timeout++; if (timeout > UART_MATRIX_RESPONSE_TIMEOUT) { break; } } if (timeout < UART_MATRIX_RESPONSE_TIMEOUT) { uart_data[i] = uart_read(); } else { uart_data[i] = 0x00; } } //check for the end packet, the key state bytes use the LSBs, so 0xE0 //will only show up here if the correct bytes were recieved uint8_t checksum = 0x00; for (uint8_t z = 0; z < 10; z++){ checksum = checksum^uart_data[z]; } checksum = checksum ^ (uart_data[10] & 0xF0); // Smash the checksum from 1 byte into 4 bits checksum = (checksum ^ ((checksum & 0xF0)>>4)) & 0x0F; //xprintf("\r\nGOT RAW PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5],uart_data[6],uart_data[7],uart_data[8],uart_data[9],uart_data[10],checksum); if ((uart_data[10] & 0x0F) == checksum) { //this is an arbitrary binary checksum (1001) (that would be 0x9.) //xprintf("\r\nGOT PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5]); //shifting and transferring the keystates to the QMK matrix variable //bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3, //bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0) //bits 43-48 are row 5 (same as row 4) /* ASSUMING MSB FIRST */ matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK; matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4); matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK; matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK; matrix[4] = (((uint16_t) uart_data[5] << 7) | ((uart_data[10] & 1<<7) ? 1:0) << 13 | ((uart_data[10] & 1<<6) ? 1:0) << 6) & LOWER_ROWMASK; /* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */ for (uint8_t i = 0; i < MATRIX_ROWS; i++) { //I've unpacked these into the mirror image of what QMK expects them to be, so... /*uint8_t halfOne = (matrix[i]>>8); uint8_t halfTwo = (matrix[i] & 0xFF); halfOne = ((halfOne * 0x0802LU & 0x22110LU) | (halfOne * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; halfTwo = ((halfTwo * 0x0802LU & 0x22110LU) | (halfTwo * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; matrix[i] = ((halfTwo<<8) & halfOne);*/ //matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; matrix[i] = bitrev16(matrix[i]); //bithack mirror! Doesn't make any sense, but works - and efficiently. } //if (uart_data[6]!=0 || uart_data[7]!=0){ //if (maxCount<101){ // xprintf("\r\nMouse data: x=%d, y=%d",(int8_t)uart_data[6],(int8_t)uart_data[7]); //} report_mouse_t currentReport = {}; //check for the end packet, bytes 1-4 are movement and scroll //but byte 5 has bits 0-3 for the scroll button state //(1000 if pressed, 0000 if not) and bits 4-7 are always 1 //We can use this to verify the report sent properly. currentReport = pointing_device_get_report(); //shifting and transferring the info to the mouse report varaible //mouseReport.x = 127 max -127 min currentReport.x = (int8_t) uart_data[6]; //mouseReport.y = 127 max -127 min currentReport.y = (int8_t) uart_data[7]; //mouseReport.v = 127 max -127 min (scroll vertical) currentReport.v = (int8_t) uart_data[8]; //mouseReport.h = 127 max -127 min (scroll horizontal) currentReport.h = (int8_t) uart_data[9]; /* currentReport.x = 0; currentReport.y = 0; currentReport.v = 0; currentReport.h = 0;*/ pointing_device_set_report(currentReport); } else { //xprintf("\r\nRequested packet, data 10 was %d but checksum was %d",(uart_data[10] & 0x0F), (checksum & 0x0F)); } //matrix_print(); matrix_scan_quantum(); return 1; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { print_hex8(row); print(": "); print_matrix_row(row); print("\n"); } }