/* Copyright 2012 Jun Wako Copyright 2014 Jack Humbert This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdbool.h> #if defined(__AVR__) #include <avr/io.h> #endif #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "timer.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { matrix_init_quantum(); } uint8_t matrix_scan(void) { SERIAL_UART_INIT(); uint32_t timeout = 0; //the s character requests the RF slave to send the matrix SERIAL_UART_DATA = 's'; //trust the external keystates entirely, erase the last data uint8_t uart_data[11] = {0}; //there are 10 bytes corresponding to 10 columns, and an end byte for (uint8_t i = 0; i < 11; i++) { //wait for the serial data, timeout if it's been too long //this only happened in testing with a loose wire, but does no //harm to leave it in here while(!SERIAL_UART_RXD_PRESENT){ timeout++; if (timeout > 10000){ break; } } uart_data[i] = SERIAL_UART_DATA; } //check for the end packet, the key state bytes use the LSBs, so 0xE0 //will only show up here if the correct bytes were recieved if (uart_data[10] == 0xE0) { //shifting and transferring the keystates to the QMK matrix variable for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = (uint16_t) uart_data[i*2] | (uint16_t) uart_data[i*2+1] << 5; } } matrix_scan_quantum(); return 1; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; }